768 lines
26 KiB
Python
768 lines
26 KiB
Python
|
# coding=utf-8
|
|||
|
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
|||
|
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
|||
|
#
|
|||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|||
|
# you may not use this file except in compliance with the License.
|
|||
|
# You may obtain a copy of the License at
|
|||
|
#
|
|||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|||
|
#
|
|||
|
# Unless required by applicable law or agreed to in writing, software
|
|||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|||
|
# See the License for the specific language governing permissions and
|
|||
|
# limitations under the License.
|
|||
|
""" Tokenization classes for BERTweet"""
|
|||
|
|
|||
|
|
|||
|
import html
|
|||
|
import os
|
|||
|
import re
|
|||
|
from shutil import copyfile
|
|||
|
from typing import List, Optional, Tuple
|
|||
|
|
|||
|
import regex
|
|||
|
|
|||
|
from ...tokenization_utils import PreTrainedTokenizer
|
|||
|
from ...utils import logging
|
|||
|
|
|||
|
|
|||
|
logger = logging.get_logger(__name__)
|
|||
|
|
|||
|
VOCAB_FILES_NAMES = {
|
|||
|
"vocab_file": "vocab.txt",
|
|||
|
"merges_file": "bpe.codes",
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
def get_pairs(word):
|
|||
|
"""
|
|||
|
Return set of symbol pairs in a word.
|
|||
|
|
|||
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
|||
|
"""
|
|||
|
pairs = set()
|
|||
|
prev_char = word[0]
|
|||
|
for char in word[1:]:
|
|||
|
pairs.add((prev_char, char))
|
|||
|
prev_char = char
|
|||
|
|
|||
|
pairs = set(pairs)
|
|||
|
return pairs
|
|||
|
|
|||
|
|
|||
|
class BertweetTokenizer(PreTrainedTokenizer):
|
|||
|
"""
|
|||
|
Constructs a BERTweet tokenizer, using Byte-Pair-Encoding.
|
|||
|
|
|||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
|||
|
this superclass for more information regarding those methods.
|
|||
|
|
|||
|
Args:
|
|||
|
vocab_file (`str`):
|
|||
|
Path to the vocabulary file.
|
|||
|
merges_file (`str`):
|
|||
|
Path to the merges file.
|
|||
|
normalization (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether or not to apply a normalization preprocess.
|
|||
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
|||
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
|||
|
|
|||
|
<Tip>
|
|||
|
|
|||
|
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
|||
|
sequence. The token used is the `cls_token`.
|
|||
|
|
|||
|
</Tip>
|
|||
|
|
|||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
|||
|
The end of sequence token.
|
|||
|
|
|||
|
<Tip>
|
|||
|
|
|||
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
|||
|
The token used is the `sep_token`.
|
|||
|
|
|||
|
</Tip>
|
|||
|
|
|||
|
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
|||
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
|||
|
sequence classification or for a text and a question for question answering. It is also used as the last
|
|||
|
token of a sequence built with special tokens.
|
|||
|
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
|||
|
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
|||
|
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
|||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
|||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|||
|
token instead.
|
|||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
|||
|
The token used for padding, for example when batching sequences of different lengths.
|
|||
|
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
|||
|
The token used for masking values. This is the token used when training this model with masked language
|
|||
|
modeling. This is the token which the model will try to predict.
|
|||
|
"""
|
|||
|
|
|||
|
vocab_files_names = VOCAB_FILES_NAMES
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
vocab_file,
|
|||
|
merges_file,
|
|||
|
normalization=False,
|
|||
|
bos_token="<s>",
|
|||
|
eos_token="</s>",
|
|||
|
sep_token="</s>",
|
|||
|
cls_token="<s>",
|
|||
|
unk_token="<unk>",
|
|||
|
pad_token="<pad>",
|
|||
|
mask_token="<mask>",
|
|||
|
**kwargs,
|
|||
|
):
|
|||
|
try:
|
|||
|
from emoji import demojize
|
|||
|
|
|||
|
self.demojizer = demojize
|
|||
|
except ImportError:
|
|||
|
logger.warning(
|
|||
|
"emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3"
|
|||
|
" install emoji==0.6.0"
|
|||
|
)
|
|||
|
self.demojizer = None
|
|||
|
|
|||
|
self.vocab_file = vocab_file
|
|||
|
self.merges_file = merges_file
|
|||
|
|
|||
|
self.encoder = {}
|
|||
|
self.encoder[str(bos_token)] = 0
|
|||
|
self.encoder[str(pad_token)] = 1
|
|||
|
self.encoder[str(eos_token)] = 2
|
|||
|
self.encoder[str(unk_token)] = 3
|
|||
|
|
|||
|
self.add_from_file(vocab_file)
|
|||
|
|
|||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
|||
|
|
|||
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
|||
|
merges = merges_handle.read().split("\n")[:-1]
|
|||
|
merges = [tuple(merge.split()[:-1]) for merge in merges]
|
|||
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
|||
|
self.cache = {}
|
|||
|
|
|||
|
self.normalization = normalization
|
|||
|
self.tweetPreprocessor = TweetTokenizer()
|
|||
|
self.special_puncts = {"’": "'", "…": "..."}
|
|||
|
|
|||
|
super().__init__(
|
|||
|
normalization=normalization,
|
|||
|
bos_token=bos_token,
|
|||
|
eos_token=eos_token,
|
|||
|
sep_token=sep_token,
|
|||
|
cls_token=cls_token,
|
|||
|
unk_token=unk_token,
|
|||
|
pad_token=pad_token,
|
|||
|
mask_token=mask_token,
|
|||
|
**kwargs,
|
|||
|
)
|
|||
|
|
|||
|
def build_inputs_with_special_tokens(
|
|||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|||
|
) -> List[int]:
|
|||
|
"""
|
|||
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
|||
|
adding special tokens. A BERTweet sequence has the following format:
|
|||
|
|
|||
|
- single sequence: `<s> X </s>`
|
|||
|
- pair of sequences: `<s> A </s></s> B </s>`
|
|||
|
|
|||
|
Args:
|
|||
|
token_ids_0 (`List[int]`):
|
|||
|
List of IDs to which the special tokens will be added.
|
|||
|
token_ids_1 (`List[int]`, *optional*):
|
|||
|
Optional second list of IDs for sequence pairs.
|
|||
|
|
|||
|
Returns:
|
|||
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
|||
|
"""
|
|||
|
|
|||
|
if token_ids_1 is None:
|
|||
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|||
|
cls = [self.cls_token_id]
|
|||
|
sep = [self.sep_token_id]
|
|||
|
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
|||
|
|
|||
|
def get_special_tokens_mask(
|
|||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|||
|
) -> List[int]:
|
|||
|
"""
|
|||
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|||
|
special tokens using the tokenizer `prepare_for_model` method.
|
|||
|
|
|||
|
Args:
|
|||
|
token_ids_0 (`List[int]`):
|
|||
|
List of IDs.
|
|||
|
token_ids_1 (`List[int]`, *optional*):
|
|||
|
Optional second list of IDs for sequence pairs.
|
|||
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
|||
|
Whether or not the token list is already formatted with special tokens for the model.
|
|||
|
|
|||
|
Returns:
|
|||
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|||
|
"""
|
|||
|
|
|||
|
if already_has_special_tokens:
|
|||
|
return super().get_special_tokens_mask(
|
|||
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
|||
|
)
|
|||
|
|
|||
|
if token_ids_1 is None:
|
|||
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|||
|
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
|||
|
|
|||
|
def create_token_type_ids_from_sequences(
|
|||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|||
|
) -> List[int]:
|
|||
|
"""
|
|||
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does
|
|||
|
not make use of token type ids, therefore a list of zeros is returned.
|
|||
|
|
|||
|
Args:
|
|||
|
token_ids_0 (`List[int]`):
|
|||
|
List of IDs.
|
|||
|
token_ids_1 (`List[int]`, *optional*):
|
|||
|
Optional second list of IDs for sequence pairs.
|
|||
|
|
|||
|
Returns:
|
|||
|
`List[int]`: List of zeros.
|
|||
|
"""
|
|||
|
|
|||
|
sep = [self.sep_token_id]
|
|||
|
cls = [self.cls_token_id]
|
|||
|
|
|||
|
if token_ids_1 is None:
|
|||
|
return len(cls + token_ids_0 + sep) * [0]
|
|||
|
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
|||
|
|
|||
|
@property
|
|||
|
def vocab_size(self):
|
|||
|
return len(self.encoder)
|
|||
|
|
|||
|
def get_vocab(self):
|
|||
|
return dict(self.encoder, **self.added_tokens_encoder)
|
|||
|
|
|||
|
def bpe(self, token):
|
|||
|
if token in self.cache:
|
|||
|
return self.cache[token]
|
|||
|
word = tuple(token)
|
|||
|
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
|||
|
pairs = get_pairs(word)
|
|||
|
|
|||
|
if not pairs:
|
|||
|
return token
|
|||
|
|
|||
|
while True:
|
|||
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
|||
|
if bigram not in self.bpe_ranks:
|
|||
|
break
|
|||
|
first, second = bigram
|
|||
|
new_word = []
|
|||
|
i = 0
|
|||
|
while i < len(word):
|
|||
|
try:
|
|||
|
j = word.index(first, i)
|
|||
|
except ValueError:
|
|||
|
new_word.extend(word[i:])
|
|||
|
break
|
|||
|
else:
|
|||
|
new_word.extend(word[i:j])
|
|||
|
i = j
|
|||
|
|
|||
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
|||
|
new_word.append(first + second)
|
|||
|
i += 2
|
|||
|
else:
|
|||
|
new_word.append(word[i])
|
|||
|
i += 1
|
|||
|
new_word = tuple(new_word)
|
|||
|
word = new_word
|
|||
|
if len(word) == 1:
|
|||
|
break
|
|||
|
else:
|
|||
|
pairs = get_pairs(word)
|
|||
|
word = "@@ ".join(word)
|
|||
|
word = word[:-4]
|
|||
|
self.cache[token] = word
|
|||
|
return word
|
|||
|
|
|||
|
def _tokenize(self, text):
|
|||
|
"""Tokenize a string."""
|
|||
|
if self.normalization: # Perform Tweet normalization before performing BPE
|
|||
|
text = self.normalizeTweet(text)
|
|||
|
|
|||
|
split_tokens = []
|
|||
|
words = re.findall(r"\S+\n?", text)
|
|||
|
for token in words:
|
|||
|
split_tokens.extend(list(self.bpe(token).split(" ")))
|
|||
|
return split_tokens
|
|||
|
|
|||
|
def normalizeTweet(self, tweet):
|
|||
|
"""
|
|||
|
Normalize a raw Tweet
|
|||
|
"""
|
|||
|
for punct in self.special_puncts:
|
|||
|
tweet = tweet.replace(punct, self.special_puncts[punct])
|
|||
|
|
|||
|
tokens = self.tweetPreprocessor.tokenize(tweet)
|
|||
|
normTweet = " ".join([self.normalizeToken(token) for token in tokens])
|
|||
|
|
|||
|
normTweet = (
|
|||
|
normTweet.replace("cannot ", "can not ")
|
|||
|
.replace("n't ", " n't ")
|
|||
|
.replace("n 't ", " n't ")
|
|||
|
.replace("ca n't", "can't")
|
|||
|
.replace("ai n't", "ain't")
|
|||
|
)
|
|||
|
normTweet = (
|
|||
|
normTweet.replace("'m ", " 'm ")
|
|||
|
.replace("'re ", " 're ")
|
|||
|
.replace("'s ", " 's ")
|
|||
|
.replace("'ll ", " 'll ")
|
|||
|
.replace("'d ", " 'd ")
|
|||
|
.replace("'ve ", " 've ")
|
|||
|
)
|
|||
|
normTweet = (
|
|||
|
normTweet.replace(" p . m .", " p.m.")
|
|||
|
.replace(" p . m ", " p.m ")
|
|||
|
.replace(" a . m .", " a.m.")
|
|||
|
.replace(" a . m ", " a.m ")
|
|||
|
)
|
|||
|
|
|||
|
return " ".join(normTweet.split())
|
|||
|
|
|||
|
def normalizeToken(self, token):
|
|||
|
"""
|
|||
|
Normalize tokens in a Tweet
|
|||
|
"""
|
|||
|
lowercased_token = token.lower()
|
|||
|
if token.startswith("@"):
|
|||
|
return "@USER"
|
|||
|
elif lowercased_token.startswith("http") or lowercased_token.startswith("www"):
|
|||
|
return "HTTPURL"
|
|||
|
elif len(token) == 1:
|
|||
|
if token in self.special_puncts:
|
|||
|
return self.special_puncts[token]
|
|||
|
if self.demojizer is not None:
|
|||
|
return self.demojizer(token)
|
|||
|
else:
|
|||
|
return token
|
|||
|
else:
|
|||
|
return token
|
|||
|
|
|||
|
def _convert_token_to_id(self, token):
|
|||
|
"""Converts a token (str) in an id using the vocab."""
|
|||
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
|||
|
|
|||
|
def _convert_id_to_token(self, index):
|
|||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|||
|
return self.decoder.get(index, self.unk_token)
|
|||
|
|
|||
|
def convert_tokens_to_string(self, tokens):
|
|||
|
"""Converts a sequence of tokens (string) in a single string."""
|
|||
|
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
|||
|
return out_string
|
|||
|
|
|||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|||
|
if not os.path.isdir(save_directory):
|
|||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
|||
|
return
|
|||
|
out_vocab_file = os.path.join(
|
|||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|||
|
)
|
|||
|
out_merge_file = os.path.join(
|
|||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
|||
|
)
|
|||
|
|
|||
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
|||
|
copyfile(self.vocab_file, out_vocab_file)
|
|||
|
elif not os.path.isfile(self.vocab_file):
|
|||
|
with open(out_vocab_file, "wb") as fi:
|
|||
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
|||
|
fi.write(content_spiece_model)
|
|||
|
|
|||
|
if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file):
|
|||
|
copyfile(self.merges_file, out_merge_file)
|
|||
|
|
|||
|
return out_vocab_file, out_merge_file
|
|||
|
|
|||
|
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
|||
|
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
|||
|
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
|||
|
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
|||
|
# return ''.join(tokens_generated_so_far)
|
|||
|
|
|||
|
def add_from_file(self, f):
|
|||
|
"""
|
|||
|
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
|
|||
|
"""
|
|||
|
if isinstance(f, str):
|
|||
|
try:
|
|||
|
with open(f, "r", encoding="utf-8") as fd:
|
|||
|
self.add_from_file(fd)
|
|||
|
except FileNotFoundError as fnfe:
|
|||
|
raise fnfe
|
|||
|
except UnicodeError:
|
|||
|
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset")
|
|||
|
return
|
|||
|
|
|||
|
lines = f.readlines()
|
|||
|
for lineTmp in lines:
|
|||
|
line = lineTmp.strip()
|
|||
|
idx = line.rfind(" ")
|
|||
|
if idx == -1:
|
|||
|
raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'")
|
|||
|
word = line[:idx]
|
|||
|
self.encoder[word] = len(self.encoder)
|
|||
|
|
|||
|
|
|||
|
# Natural Language Toolkit: Twitter Tokenizer
|
|||
|
#
|
|||
|
# Copyright (C) 2001-2020 NLTK Project
|
|||
|
# Author: Christopher Potts <cgpotts@stanford.edu>
|
|||
|
# Ewan Klein <ewan@inf.ed.ac.uk> (modifications)
|
|||
|
# Pierpaolo Pantone <> (modifications)
|
|||
|
# URL: http://nltk.org/
|
|||
|
# For license information, see LICENSE.TXT
|
|||
|
#
|
|||
|
|
|||
|
|
|||
|
"""
|
|||
|
Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this:
|
|||
|
|
|||
|
1. The tuple regex_strings defines a list of regular expression strings.
|
|||
|
|
|||
|
2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re.
|
|||
|
|
|||
|
3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of
|
|||
|
the class Tokenizer.
|
|||
|
|
|||
|
4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it
|
|||
|
is set to False, then the tokenizer will lowercase everything except for emoticons.
|
|||
|
|
|||
|
"""
|
|||
|
|
|||
|
|
|||
|
######################################################################
|
|||
|
#
|
|||
|
# import regex # https://github.com/nltk/nltk/issues/2409
|
|||
|
# import html
|
|||
|
#
|
|||
|
######################################################################
|
|||
|
# The following strings are components in the regular expression
|
|||
|
# that is used for tokenizing. It's important that phone_number
|
|||
|
# appears first in the final regex (since it can contain whitespace).
|
|||
|
# It also could matter that tags comes after emoticons, due to the
|
|||
|
# possibility of having text like
|
|||
|
#
|
|||
|
# <:| and some text >:)
|
|||
|
#
|
|||
|
# Most importantly, the final element should always be last, since it
|
|||
|
# does a last ditch whitespace-based tokenization of whatever is left.
|
|||
|
|
|||
|
# ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ?
|
|||
|
|
|||
|
# This particular element is used in a couple ways, so we define it
|
|||
|
# with a name:
|
|||
|
# docstyle-ignore
|
|||
|
EMOTICONS = r"""
|
|||
|
(?:
|
|||
|
[<>]?
|
|||
|
[:;=8] # eyes
|
|||
|
[\-o\*\']? # optional nose
|
|||
|
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
|||
|
|
|
|||
|
[\)\]\(\[dDpP/\:\}\{@\|\\] # mouth
|
|||
|
[\-o\*\']? # optional nose
|
|||
|
[:;=8] # eyes
|
|||
|
[<>]?
|
|||
|
|
|
|||
|
<3 # heart
|
|||
|
)"""
|
|||
|
|
|||
|
# URL pattern due to John Gruber, modified by Tom Winzig. See
|
|||
|
# https://gist.github.com/winzig/8894715
|
|||
|
# docstyle-ignore
|
|||
|
URLS = r""" # Capture 1: entire matched URL
|
|||
|
(?:
|
|||
|
https?: # URL protocol and colon
|
|||
|
(?:
|
|||
|
/{1,3} # 1-3 slashes
|
|||
|
| # or
|
|||
|
[a-z0-9%] # Single letter or digit or '%'
|
|||
|
# (Trying not to match e.g. "URI::Escape")
|
|||
|
)
|
|||
|
| # or
|
|||
|
# looks like domain name followed by a slash:
|
|||
|
[a-z0-9.\-]+[.]
|
|||
|
(?:[a-z]{2,13})
|
|||
|
/
|
|||
|
)
|
|||
|
(?: # One or more:
|
|||
|
[^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[]
|
|||
|
| # or
|
|||
|
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
|||
|
|
|
|||
|
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
|||
|
)+
|
|||
|
(?: # End with:
|
|||
|
\([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...)
|
|||
|
|
|
|||
|
\([^\s]+?\) # balanced parens, non-recursive: (...)
|
|||
|
| # or
|
|||
|
[^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars
|
|||
|
)
|
|||
|
| # OR, the following to match naked domains:
|
|||
|
(?:
|
|||
|
(?<!@) # not preceded by a @, avoid matching foo@_gmail.com_
|
|||
|
[a-z0-9]+
|
|||
|
(?:[.\-][a-z0-9]+)*
|
|||
|
[.]
|
|||
|
(?:[a-z]{2,13})
|
|||
|
\b
|
|||
|
/?
|
|||
|
(?!@) # not succeeded by a @,
|
|||
|
# avoid matching "foo.na" in "foo.na@example.com"
|
|||
|
)
|
|||
|
"""
|
|||
|
|
|||
|
# docstyle-ignore
|
|||
|
# The components of the tokenizer:
|
|||
|
REGEXPS = (
|
|||
|
URLS,
|
|||
|
# Phone numbers:
|
|||
|
r"""
|
|||
|
(?:
|
|||
|
(?: # (international)
|
|||
|
\+?[01]
|
|||
|
[ *\-.\)]*
|
|||
|
)?
|
|||
|
(?: # (area code)
|
|||
|
[\(]?
|
|||
|
\d{3}
|
|||
|
[ *\-.\)]*
|
|||
|
)?
|
|||
|
\d{3} # exchange
|
|||
|
[ *\-.\)]*
|
|||
|
\d{4} # base
|
|||
|
)""",
|
|||
|
# ASCII Emoticons
|
|||
|
EMOTICONS,
|
|||
|
# HTML tags:
|
|||
|
r"""<[^>\s]+>""",
|
|||
|
# ASCII Arrows
|
|||
|
r"""[\-]+>|<[\-]+""",
|
|||
|
# Twitter username:
|
|||
|
r"""(?:@[\w_]+)""",
|
|||
|
# Twitter hashtags:
|
|||
|
r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""",
|
|||
|
# email addresses
|
|||
|
r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""",
|
|||
|
# docstyle-ignore
|
|||
|
# Remaining word types:
|
|||
|
r"""
|
|||
|
(?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes.
|
|||
|
|
|
|||
|
(?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals.
|
|||
|
|
|
|||
|
(?:[\w_]+) # Words without apostrophes or dashes.
|
|||
|
|
|
|||
|
(?:\.(?:\s*\.){1,}) # Ellipsis dots.
|
|||
|
|
|
|||
|
(?:\S) # Everything else that isn't whitespace.
|
|||
|
""",
|
|||
|
)
|
|||
|
|
|||
|
######################################################################
|
|||
|
# This is the core tokenizing regex:
|
|||
|
|
|||
|
WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE)
|
|||
|
|
|||
|
# WORD_RE performs poorly on these patterns:
|
|||
|
HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}")
|
|||
|
|
|||
|
# The emoticon string gets its own regex so that we can preserve case for
|
|||
|
# them as needed:
|
|||
|
EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE)
|
|||
|
|
|||
|
# These are for regularizing HTML entities to Unicode:
|
|||
|
ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);")
|
|||
|
|
|||
|
|
|||
|
######################################################################
|
|||
|
# Functions for converting html entities
|
|||
|
######################################################################
|
|||
|
|
|||
|
|
|||
|
def _str_to_unicode(text, encoding=None, errors="strict"):
|
|||
|
if encoding is None:
|
|||
|
encoding = "utf-8"
|
|||
|
if isinstance(text, bytes):
|
|||
|
return text.decode(encoding, errors)
|
|||
|
return text
|
|||
|
|
|||
|
|
|||
|
def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"):
|
|||
|
"""
|
|||
|
Remove entities from text by converting them to their corresponding unicode character.
|
|||
|
|
|||
|
Args:
|
|||
|
text:
|
|||
|
A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8').
|
|||
|
keep (list):
|
|||
|
List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and
|
|||
|
`&#hhhh;`) and named entities (such as ` ` or `>`).
|
|||
|
remove_illegal (bool):
|
|||
|
If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are
|
|||
|
kept "as is".
|
|||
|
|
|||
|
Returns: A unicode string with the entities removed.
|
|||
|
|
|||
|
See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py
|
|||
|
|
|||
|
Examples:
|
|||
|
|
|||
|
```python
|
|||
|
>>> from nltk.tokenize.casual import _replace_html_entities
|
|||
|
|
|||
|
>>> _replace_html_entities(b"Price: £100")
|
|||
|
'Price: \\xa3100'
|
|||
|
|
|||
|
>>> print(_replace_html_entities(b"Price: £100"))
|
|||
|
Price: £100
|
|||
|
```"""
|
|||
|
|
|||
|
def _convert_entity(match):
|
|||
|
entity_body = match.group(3)
|
|||
|
if match.group(1):
|
|||
|
try:
|
|||
|
if match.group(2):
|
|||
|
number = int(entity_body, 16)
|
|||
|
else:
|
|||
|
number = int(entity_body, 10)
|
|||
|
# Numeric character references in the 80-9F range are typically
|
|||
|
# interpreted by browsers as representing the characters mapped
|
|||
|
# to bytes 80-9F in the Windows-1252 encoding. For more info
|
|||
|
# see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets
|
|||
|
if 0x80 <= number <= 0x9F:
|
|||
|
return bytes((number,)).decode("cp1252")
|
|||
|
except ValueError:
|
|||
|
number = None
|
|||
|
else:
|
|||
|
if entity_body in keep:
|
|||
|
return match.group(0)
|
|||
|
else:
|
|||
|
number = html.entities.name2codepoint.get(entity_body)
|
|||
|
if number is not None:
|
|||
|
try:
|
|||
|
return chr(number)
|
|||
|
except (ValueError, OverflowError):
|
|||
|
pass
|
|||
|
|
|||
|
return "" if remove_illegal else match.group(0)
|
|||
|
|
|||
|
return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding))
|
|||
|
|
|||
|
|
|||
|
######################################################################
|
|||
|
|
|||
|
|
|||
|
class TweetTokenizer:
|
|||
|
r"""
|
|||
|
Examples:
|
|||
|
|
|||
|
```python
|
|||
|
>>> # Tokenizer for tweets.
|
|||
|
>>> from nltk.tokenize import TweetTokenizer
|
|||
|
|
|||
|
>>> tknzr = TweetTokenizer()
|
|||
|
>>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--"
|
|||
|
>>> tknzr.tokenize(s0)
|
|||
|
['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--']
|
|||
|
|
|||
|
>>> # Examples using *strip_handles* and *reduce_len parameters*:
|
|||
|
>>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True)
|
|||
|
>>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!"
|
|||
|
>>> tknzr.tokenize(s1)
|
|||
|
[':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!']
|
|||
|
```"""
|
|||
|
|
|||
|
def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False):
|
|||
|
self.preserve_case = preserve_case
|
|||
|
self.reduce_len = reduce_len
|
|||
|
self.strip_handles = strip_handles
|
|||
|
|
|||
|
def tokenize(self, text):
|
|||
|
"""
|
|||
|
Args:
|
|||
|
text: str
|
|||
|
|
|||
|
Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if
|
|||
|
`preserve_case=False`
|
|||
|
"""
|
|||
|
# Fix HTML character entities:
|
|||
|
text = _replace_html_entities(text)
|
|||
|
# Remove username handles
|
|||
|
if self.strip_handles:
|
|||
|
text = remove_handles(text)
|
|||
|
# Normalize word lengthening
|
|||
|
if self.reduce_len:
|
|||
|
text = reduce_lengthening(text)
|
|||
|
# Shorten problematic sequences of characters
|
|||
|
safe_text = HANG_RE.sub(r"\1\1\1", text)
|
|||
|
# Tokenize:
|
|||
|
words = WORD_RE.findall(safe_text)
|
|||
|
# Possibly alter the case, but avoid changing emoticons like :D into :d:
|
|||
|
if not self.preserve_case:
|
|||
|
words = [x if EMOTICON_RE.search(x) else x.lower() for x in words]
|
|||
|
return words
|
|||
|
|
|||
|
|
|||
|
######################################################################
|
|||
|
# Normalization Functions
|
|||
|
######################################################################
|
|||
|
|
|||
|
|
|||
|
def reduce_lengthening(text):
|
|||
|
"""
|
|||
|
Replace repeated character sequences of length 3 or greater with sequences of length 3.
|
|||
|
"""
|
|||
|
pattern = regex.compile(r"(.)\1{2,}")
|
|||
|
return pattern.sub(r"\1\1\1", text)
|
|||
|
|
|||
|
|
|||
|
def remove_handles(text):
|
|||
|
"""
|
|||
|
Remove Twitter username handles from text.
|
|||
|
"""
|
|||
|
pattern = regex.compile(
|
|||
|
r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)"
|
|||
|
)
|
|||
|
# Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly
|
|||
|
return pattern.sub(" ", text)
|
|||
|
|
|||
|
|
|||
|
######################################################################
|
|||
|
# Tokenization Function
|
|||
|
######################################################################
|
|||
|
|
|||
|
|
|||
|
def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False):
|
|||
|
"""
|
|||
|
Convenience function for wrapping the tokenizer.
|
|||
|
"""
|
|||
|
return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize(
|
|||
|
text
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
###############################################################################
|