925 lines
40 KiB
Python
925 lines
40 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch BioGPT model."""
|
||
|
|
||
|
|
||
|
import math
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutputWithPastAndCrossAttentions,
|
||
|
CausalLMOutputWithCrossAttentions,
|
||
|
SequenceClassifierOutputWithPast,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
)
|
||
|
from .configuration_biogpt import BioGptConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "microsoft/biogpt"
|
||
|
_CONFIG_FOR_DOC = "BioGptConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.opt.modeling_opt.OPTLearnedPositionalEmbedding with OPT->BioGpt
|
||
|
class BioGptLearnedPositionalEmbedding(nn.Embedding):
|
||
|
"""
|
||
|
This module learns positional embeddings up to a fixed maximum size.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_embeddings: int, embedding_dim: int):
|
||
|
# BioGpt is set up so that if padding_idx is specified then offset the embedding ids by 2
|
||
|
# and adjust num_embeddings appropriately. Other models don't have this hack
|
||
|
self.offset = 2
|
||
|
super().__init__(num_embeddings + self.offset, embedding_dim)
|
||
|
|
||
|
def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int = 0):
|
||
|
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
|
||
|
attention_mask = attention_mask.long()
|
||
|
|
||
|
# create positions depending on attention_mask
|
||
|
positions = (torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask).long() - 1
|
||
|
|
||
|
# cut positions if `past_key_values_length` is > 0
|
||
|
positions = positions[:, past_key_values_length:]
|
||
|
|
||
|
return super().forward(positions + self.offset)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BioGpt
|
||
|
class BioGptAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
is_decoder: bool = False,
|
||
|
bias: bool = True,
|
||
|
is_causal: bool = False,
|
||
|
config: Optional[BioGptConfig] = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
self.config = config
|
||
|
|
||
|
if (self.head_dim * num_heads) != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
||
|
f" and `num_heads`: {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.is_decoder = is_decoder
|
||
|
self.is_causal = is_causal
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
|
||
|
bsz, tgt_len, _ = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
||
|
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
||
|
# the provided `key_value_states` to support prefix tuning
|
||
|
if (
|
||
|
is_cross_attention
|
||
|
and past_key_value is not None
|
||
|
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
||
|
):
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||
|
elif past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.reshape(*proj_shape)
|
||
|
value_states = value_states.reshape(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
if layer_head_mask.size() != (self.num_heads,):
|
||
|
raise ValueError(
|
||
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to be reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
|
||
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||
|
# partitioned across GPUs when using tensor-parallelism.
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class BioGptDecoderLayer(nn.Module):
|
||
|
def __init__(self, config: BioGptConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
|
||
|
self.self_attn = BioGptAttention(
|
||
|
embed_dim=self.embed_dim,
|
||
|
num_heads=config.num_attention_heads,
|
||
|
dropout=config.attention_probs_dropout_prob,
|
||
|
is_decoder=True,
|
||
|
)
|
||
|
self.dropout = config.hidden_dropout_prob
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
self.activation_dropout = config.activation_dropout
|
||
|
|
||
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
self.fc1 = nn.Linear(self.embed_dim, config.intermediate_size)
|
||
|
self.fc2 = nn.Linear(config.intermediate_size, self.embed_dim)
|
||
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
use_cache: Optional[bool] = True,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
||
|
`(encoder_attention_heads,)`.
|
||
|
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||
|
(see `past_key_values`).
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.self_attn_layer_norm(hidden_states)
|
||
|
|
||
|
# Self Attention
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||
|
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
past_key_value=self_attn_past_key_value,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=layer_head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
# Fully Connected
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (self_attn_weights,)
|
||
|
|
||
|
if use_cache:
|
||
|
outputs += (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class BioGptPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = BioGptConfig
|
||
|
base_model_prefix = "biogpt"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, nn.Linear):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
BIOGPT_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`~BioGptConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
BIOGPT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
||
|
|
||
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
||
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
BIOGPT_START_DOCSTRING,
|
||
|
)
|
||
|
class BioGptModel(BioGptPreTrainedModel):
|
||
|
def __init__(self, config: BioGptConfig):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.layerdrop = config.layerdrop
|
||
|
self.dropout = config.hidden_dropout_prob
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
|
||
|
|
||
|
self.embed_tokens = nn.Embedding(config.vocab_size, self.embed_dim, self.padding_idx)
|
||
|
self.embed_positions = BioGptLearnedPositionalEmbedding(config.max_position_embeddings, self.embed_dim)
|
||
|
|
||
|
self.layers = nn.ModuleList([BioGptDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.layer_norm = nn.LayerNorm(self.embed_dim)
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embed_tokens = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# retrieve input_ids and inputs_embeds
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
input = input_ids
|
||
|
input_shape = input.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
input = inputs_embeds[:, :, -1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
# past_key_values_length
|
||
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embed_tokens(input) * self.embed_scale
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(
|
||
|
(inputs_embeds.shape[0], inputs_embeds.shape[1] + past_key_values_length),
|
||
|
dtype=torch.bool,
|
||
|
device=inputs_embeds.device,
|
||
|
)
|
||
|
elif attention_mask.shape[1] != past_key_values_length + input_shape[1]:
|
||
|
raise ValueError(
|
||
|
f"The provided attention mask has length {attention_mask.shape[1]}, but its length should be "
|
||
|
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
|
||
|
)
|
||
|
|
||
|
# embed positions
|
||
|
positions = self.embed_positions(attention_mask, past_key_values_length)
|
||
|
|
||
|
attention_mask = _prepare_4d_causal_attention_mask(
|
||
|
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
||
|
)
|
||
|
|
||
|
hidden_states = inputs_embeds + positions
|
||
|
|
||
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
all_cross_attentions = None
|
||
|
next_decoder_cache = () if use_cache else None
|
||
|
|
||
|
for idx, decoder_layer in enumerate(self.layers):
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
if dropout_probability < self.layerdrop:
|
||
|
continue
|
||
|
|
||
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
decoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask[idx] if head_mask is not None else None,
|
||
|
None,
|
||
|
output_attentions,
|
||
|
use_cache,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = decoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
use_cache=use_cache,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if use_cache:
|
||
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attns += (layer_outputs[1],)
|
||
|
|
||
|
# add hidden states from the last decoder layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states += (hidden_states,)
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
|
||
|
next_cache = next_decoder_cache if use_cache else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
||
|
if v is not None
|
||
|
)
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attns,
|
||
|
cross_attentions=all_cross_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""BioGPT Model with a `language modeling` head on top for CLM fine-tuning.""", BIOGPT_START_DOCSTRING
|
||
|
)
|
||
|
class BioGptForCausalLM(BioGptPreTrainedModel):
|
||
|
_tied_weights_keys = ["output_projection.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.biogpt = BioGptModel(config)
|
||
|
self.output_projection = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.output_projection
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.output_projection = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=CausalLMOutputWithCrossAttentions,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.biogpt(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
prediction_scores = self.output_projection(sequence_output)
|
||
|
|
||
|
lm_loss = None
|
||
|
if labels is not None:
|
||
|
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||
|
labels = labels[:, 1:].contiguous()
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (prediction_scores,) + outputs[1:]
|
||
|
return ((lm_loss,) + output) if lm_loss is not None else output
|
||
|
|
||
|
return CausalLMOutputWithCrossAttentions(
|
||
|
loss=lm_loss,
|
||
|
logits=prediction_scores,
|
||
|
past_key_values=outputs.past_key_values,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
cross_attentions=outputs.cross_attentions,
|
||
|
)
|
||
|
|
||
|
def prepare_inputs_for_generation(
|
||
|
self, input_ids, attention_mask, inputs_embeds=None, past_key_values=None, **kwargs
|
||
|
):
|
||
|
# only last tokens for inputs_ids if past is defined in kwargs
|
||
|
if past_key_values is not None:
|
||
|
past_length = past_key_values[0][0].shape[2]
|
||
|
|
||
|
# Some generation methods already pass only the last input ID
|
||
|
if input_ids.shape[1] > past_length:
|
||
|
remove_prefix_length = past_length
|
||
|
else:
|
||
|
# Default to old behavior: keep only final ID
|
||
|
remove_prefix_length = input_ids.shape[1] - 1
|
||
|
|
||
|
input_ids = input_ids[:, remove_prefix_length:]
|
||
|
|
||
|
if inputs_embeds is not None and past_key_values is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids}
|
||
|
|
||
|
model_inputs.update(
|
||
|
{
|
||
|
"attention_mask": attention_mask,
|
||
|
"past_key_values": past_key_values,
|
||
|
"use_cache": kwargs.get("use_cache"),
|
||
|
}
|
||
|
)
|
||
|
|
||
|
return model_inputs
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
reordered_past = ()
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += (
|
||
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||
|
)
|
||
|
return reordered_past
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
||
|
Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
BIOGPT_START_DOCSTRING,
|
||
|
)
|
||
|
class BioGptForTokenClassification(BioGptPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.biogpt = BioGptModel(config)
|
||
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
||
|
classifier_dropout = config.classifier_dropout
|
||
|
else:
|
||
|
classifier_dropout = config.hidden_dropout_prob
|
||
|
self.dropout = nn.Dropout(classifier_dropout)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.biogpt(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
logits = self.classifier(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
# Only keep active parts of the loss
|
||
|
if attention_mask is not None:
|
||
|
active_loss = attention_mask.view(-1) == 1
|
||
|
active_logits = logits.view(-1, self.num_labels)
|
||
|
active_labels = torch.where(
|
||
|
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
||
|
)
|
||
|
loss = loss_fct(active_logits, active_labels)
|
||
|
else:
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + transformer_outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The BioGpt Model transformer with a sequence classification head on top (linear layer).
|
||
|
|
||
|
[`BioGptForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
||
|
(e.g. GPT-2) do.
|
||
|
|
||
|
Since it does classification on the last token, it is required to know the position of the last token. If a
|
||
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
||
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
||
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
||
|
each row of the batch).
|
||
|
""",
|
||
|
BIOGPT_START_DOCSTRING,
|
||
|
)
|
||
|
class BioGptForSequenceClassification(BioGptPreTrainedModel):
|
||
|
def __init__(self, config: BioGptConfig):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.biogpt = BioGptModel(config)
|
||
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BIOGPT_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=SequenceClassifierOutputWithPast,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.biogpt(
|
||
|
input_ids,
|
||
|
past_key_values=past_key_values,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
hidden_states = transformer_outputs[0]
|
||
|
logits = self.score(hidden_states)
|
||
|
|
||
|
if input_ids is not None:
|
||
|
batch_size, sequence_length = input_ids.shape[:2]
|
||
|
else:
|
||
|
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||
|
|
||
|
if self.config.pad_token_id is None:
|
||
|
sequence_length = -1
|
||
|
else:
|
||
|
if input_ids is not None:
|
||
|
sequence_length = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
||
|
else:
|
||
|
sequence_length = -1
|
||
|
logger.warning(
|
||
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
||
|
)
|
||
|
|
||
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_length]
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(pooled_logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (pooled_logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutputWithPast(
|
||
|
loss=loss,
|
||
|
logits=pooled_logits,
|
||
|
past_key_values=transformer_outputs.past_key_values,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.biogpt.embed_tokens
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.biogpt.embed_tokens = value
|