1899 lines
86 KiB
Python
1899 lines
86 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch BridgeTower Model"""
|
||
|
|
||
|
import math
|
||
|
from collections import OrderedDict
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
from ...activations import ACT2FN, QuickGELUActivation
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutputWithPastAndCrossAttentions,
|
||
|
BaseModelOutputWithPoolingAndCrossAttentions,
|
||
|
MaskedLMOutput,
|
||
|
ModelOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel, apply_chunking_to_forward
|
||
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
||
|
from .configuration_bridgetower import BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "BridgeTowerConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "BridgeTower/bridgetower-base"
|
||
|
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
BRIDGETOWER_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`BridgeTowerConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
BRIDGETOWER_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
||
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
||
|
IDs?](../glossary#input-ids)
|
||
|
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`BridgeTowerImageProcessor`]. See
|
||
|
[`BridgeTowerImageProcessor.__call__`] for details.
|
||
|
|
||
|
pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||
|
Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for pixels that are real (i.e. **not masked**),
|
||
|
- 0 for pixels that are padding (i.e. **masked**).
|
||
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `pixel_values` into patch embeddings.
|
||
|
|
||
|
image_token_type_idx (`int`, *optional*):
|
||
|
- The token type ids for images.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BridgeTowerModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`BridgeTowerModel`].
|
||
|
|
||
|
Args:
|
||
|
text_features (`torch.FloatTensor` of shape `(batch_size, text_sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the text output of the last layer of the model.
|
||
|
image_features (`torch.FloatTensor` of shape `(batch_size, image_sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the image output of the last layer of the model.
|
||
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size x 2)`):
|
||
|
Concatenation of last layer hidden-state of the first token of the text and image sequence (classification
|
||
|
token), respectively, after further processing through layers used for auxiliary pretraining tasks.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
||
|
the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
text_features: torch.FloatTensor = None
|
||
|
image_features: torch.FloatTensor = None
|
||
|
pooler_output: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BridgeTowerContrastiveOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of ['BridgeTowerForContrastiveLearning']
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`:
|
||
|
Image-text contrastive loss.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||
|
text_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
|
||
|
The text embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
image_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
cross_embeds (`torch.FloatTensor)`, *optional*, returned when model is initialized with `with_projection=True`):
|
||
|
The text-image cross-modal embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
||
|
the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
text_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
image_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
cross_embeds: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
class BridgeTowerResidualAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.attn = nn.MultiheadAttention(config.hidden_size, config.hidden_size // 64)
|
||
|
self.ln_1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = nn.ModuleDict(
|
||
|
OrderedDict(
|
||
|
[
|
||
|
("c_fc", nn.Linear(config.hidden_size, config.hidden_size * 4)),
|
||
|
("gelu", QuickGELUActivation()),
|
||
|
("c_proj", nn.Linear(config.hidden_size * 4, config.hidden_size)),
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
self.ln_2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.attn_mask = None
|
||
|
|
||
|
def attention(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor):
|
||
|
if attention_mask is not None:
|
||
|
attention_mask = attention_mask.to(dtype=torch.bool, device=hidden_state.device)
|
||
|
self.attn_mask = (
|
||
|
self.attn_mask.to(dtype=hidden_state.dtype, device=hidden_state.device)
|
||
|
if self.attn_mask is not None
|
||
|
else None
|
||
|
)
|
||
|
return self.attn(
|
||
|
hidden_state,
|
||
|
hidden_state,
|
||
|
hidden_state,
|
||
|
need_weights=False,
|
||
|
attn_mask=self.attn_mask,
|
||
|
key_padding_mask=attention_mask,
|
||
|
)[0]
|
||
|
|
||
|
def forward(self, hidden_state: torch.Tensor, attention_mask: torch.Tensor = None):
|
||
|
residual_state = hidden_state + self.attention(self.ln_1(hidden_state), attention_mask)
|
||
|
hidden_state = self.ln_2(residual_state)
|
||
|
for _, layer in self.mlp.items():
|
||
|
hidden_state = layer(hidden_state)
|
||
|
hidden_state = residual_state + hidden_state
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class BridgeTowerTransformer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.hidden_size = config.hidden_size
|
||
|
self.num_hidden_layers = config.num_hidden_layers
|
||
|
if config.remove_last_layer:
|
||
|
self.resblocks = nn.ModuleList(
|
||
|
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers - 1)]
|
||
|
)
|
||
|
else:
|
||
|
self.resblocks = nn.ModuleList(
|
||
|
[BridgeTowerResidualAttention(config) for _ in range(self.num_hidden_layers)]
|
||
|
)
|
||
|
self.stop_gradient = config.stop_gradient
|
||
|
|
||
|
def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
|
||
|
hidden_states = []
|
||
|
for block in self.resblocks:
|
||
|
hidden_state = block(hidden_state, attention_mask)
|
||
|
if self.stop_gradient:
|
||
|
hidden_states.append(hidden_state.detach())
|
||
|
else:
|
||
|
hidden_states.append(hidden_state)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->BridgeTower
|
||
|
class BridgeTowerVisionEmbeddings(nn.Module):
|
||
|
def __init__(self, config: BridgeTowerVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.image_size = config.image_size
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
||
|
|
||
|
self.patch_embedding = nn.Conv2d(
|
||
|
in_channels=config.num_channels,
|
||
|
out_channels=self.embed_dim,
|
||
|
kernel_size=self.patch_size,
|
||
|
stride=self.patch_size,
|
||
|
bias=False,
|
||
|
)
|
||
|
|
||
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||
|
self.num_positions = self.num_patches + 1
|
||
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||
|
batch_size = pixel_values.shape[0]
|
||
|
target_dtype = self.patch_embedding.weight.dtype
|
||
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
||
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
|
||
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
||
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
||
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class BridgeTowerVisionTransformer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.embeddings = BridgeTowerVisionEmbeddings(config)
|
||
|
self.ln_pre = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.transformer = BridgeTowerTransformer(config)
|
||
|
self.ln_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.share_layernorm = config.share_layernorm
|
||
|
if not config.share_layernorm:
|
||
|
self.ln_separate = nn.ModuleList(
|
||
|
[nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor, attention_mask):
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
hidden_states = self.ln_pre(hidden_states)
|
||
|
# NLD -> LND
|
||
|
hidden_states = hidden_states.permute(1, 0, 2)
|
||
|
|
||
|
hidden_states = self.transformer(hidden_states, attention_mask)
|
||
|
# shape = [num_hidden_layers, hidden_size, *, grid ** 2]
|
||
|
hidden_states = torch.stack(hidden_states, dim=0)
|
||
|
# shape = [num_hidden_layers, *, hidden_size, grid ** 2]
|
||
|
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
||
|
if self.share_layernorm:
|
||
|
hidden_states = self.ln_post(hidden_states)
|
||
|
else:
|
||
|
hidden_states_stack = []
|
||
|
for hidden_states, ln in zip(hidden_states, self.ln_separate):
|
||
|
hidden_states = ln(hidden_states)
|
||
|
hidden_states_stack.append(hidden_states)
|
||
|
# shape = [num_hidden_layers, *, hidden_size, grid ** 2]
|
||
|
hidden_states = torch.stack(hidden_states_stack, dim=0)
|
||
|
return hidden_states
|
||
|
|
||
|
def forward_pre(self, pixel_values: torch.Tensor):
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
hidden_states = self.ln_pre(hidden_states)
|
||
|
# NLD -> LND
|
||
|
hidden_states = hidden_states.permute(1, 0, 2)
|
||
|
return hidden_states
|
||
|
|
||
|
def forward_post(self, hidden_state: torch.Tensor):
|
||
|
visual_output_post = hidden_state.permute(1, 0, 2)
|
||
|
visual_output_post = self.ln_post(visual_output_post)
|
||
|
return visual_output_post
|
||
|
|
||
|
|
||
|
class BridgeTowerLinkTower(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.link_tower_type = config.link_tower_type
|
||
|
self.hidden_size = config.hidden_size
|
||
|
if config.link_tower_type in ["add", "scaled_add", "interpolate"]:
|
||
|
if config.link_tower_type == "scaled_add":
|
||
|
self.scaled_factor = nn.Parameter(torch.tensor(1.0))
|
||
|
elif config.link_tower_type == "interpolate":
|
||
|
self.beta = nn.Parameter(torch.tensor(0.5))
|
||
|
self.LayerNorm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
||
|
else:
|
||
|
raise NotImplementedError(f"link_tower_type {config.link_tower_type} is not implemented")
|
||
|
|
||
|
def forward(self, hidden_states, cross_modal_hidden_states, attention_mask):
|
||
|
if self.link_tower_type == "add":
|
||
|
return self.LayerNorm(hidden_states + cross_modal_hidden_states)
|
||
|
elif self.link_tower_type == "scaled_add":
|
||
|
return self.LayerNorm(hidden_states * self.scaled_factor + cross_modal_hidden_states)
|
||
|
elif self.link_tower_type == "interpolate":
|
||
|
return self.LayerNorm(hidden_states * (1 - self.beta) + cross_modal_hidden_states * self.beta)
|
||
|
else:
|
||
|
raise NotImplementedError(f"link_tower_type {self.link_tower_type} is not implemented")
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BridgeTower
|
||
|
class BridgeTowerSelfOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BridgeTower
|
||
|
class BridgeTowerIntermediate(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BridgeTower
|
||
|
class BridgeTowerOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->BridgeTower
|
||
|
class BridgeTowerPooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->BridgeTower
|
||
|
class BridgeTowerSelfAttention(nn.Module):
|
||
|
def __init__(self, config, position_embedding_type=None):
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
||
|
f"heads ({config.num_attention_heads})"
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
self.position_embedding_type = position_embedding_type or getattr(
|
||
|
config, "position_embedding_type", "absolute"
|
||
|
)
|
||
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||
|
self.max_position_embeddings = config.max_position_embeddings
|
||
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||
|
|
||
|
self.is_decoder = config.is_decoder
|
||
|
|
||
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
|
||
|
# If this is instantiated as a cross-attention module, the keys
|
||
|
# and values come from an encoder; the attention mask needs to be
|
||
|
# such that the encoder's padding tokens are not attended to.
|
||
|
is_cross_attention = encoder_hidden_states is not None
|
||
|
|
||
|
if is_cross_attention and past_key_value is not None:
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_layer = past_key_value[0]
|
||
|
value_layer = past_key_value[1]
|
||
|
attention_mask = encoder_attention_mask
|
||
|
elif is_cross_attention:
|
||
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||
|
attention_mask = encoder_attention_mask
|
||
|
elif past_key_value is not None:
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||
|
else:
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
|
||
|
use_cache = past_key_value is not None
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_layer, value_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
|
||
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||
|
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
|
||
|
if use_cache:
|
||
|
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
|
||
|
-1, 1
|
||
|
)
|
||
|
else:
|
||
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
||
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
||
|
distance = position_ids_l - position_ids_r
|
||
|
|
||
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||
|
|
||
|
if self.position_embedding_type == "relative_key":
|
||
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||
|
attention_scores = attention_scores + relative_position_scores
|
||
|
elif self.position_embedding_type == "relative_key_query":
|
||
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||
|
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
if attention_mask is not None:
|
||
|
# Apply the attention mask is (precomputed for all layers in BridgeTowerModel forward() function)
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
outputs = outputs + (past_key_value,)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BridgeTower
|
||
|
class BridgeTowerAttention(nn.Module):
|
||
|
def __init__(self, config, position_embedding_type=None):
|
||
|
super().__init__()
|
||
|
self.self = BridgeTowerSelfAttention(config, position_embedding_type=position_embedding_type)
|
||
|
self.output = BridgeTowerSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads):
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.self.query = prune_linear_layer(self.self.query, index)
|
||
|
self.self.key = prune_linear_layer(self.self.key, index)
|
||
|
self.self.value = prune_linear_layer(self.self.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
self_outputs = self.self(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
attention_output = self.output(self_outputs[0], hidden_states)
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class BridgeTowerBertCrossLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = BridgeTowerAttention(config)
|
||
|
self.is_decoder = config.is_decoder
|
||
|
self.add_cross_attention = config.add_cross_attention
|
||
|
self.crossattention = BridgeTowerAttention(config)
|
||
|
self.intermediate = BridgeTowerIntermediate(config)
|
||
|
self.output = BridgeTowerOutput(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
encoder_hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
encoder_attention_mask=None,
|
||
|
past_key_value=None,
|
||
|
output_attentions=False,
|
||
|
):
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=None,
|
||
|
output_attentions=output_attentions,
|
||
|
past_key_value=None,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
|
||
|
# if decoder, the last output is tuple of self-attn cache
|
||
|
# add self attentions if we output attention weights
|
||
|
outputs = self_attention_outputs[1:]
|
||
|
|
||
|
cross_attention_outputs = self.crossattention(
|
||
|
attention_output,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
past_key_value=past_key_value,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = cross_attention_outputs[0]
|
||
|
# add cross attentions if we output attention weights
|
||
|
outputs = outputs + cross_attention_outputs[1:-1]
|
||
|
|
||
|
layer_output = apply_chunking_to_forward(
|
||
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||
|
)
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def feed_forward_chunk(self, attention_output):
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
return layer_output
|
||
|
|
||
|
|
||
|
class BridgeTowerTextLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = BridgeTowerAttention(config)
|
||
|
self.is_decoder = config.is_decoder
|
||
|
self.add_cross_attention = config.add_cross_attention
|
||
|
if self.add_cross_attention:
|
||
|
if not self.is_decoder:
|
||
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
||
|
self.crossattention = BridgeTowerAttention(config, position_embedding_type="absolute")
|
||
|
self.intermediate = BridgeTowerIntermediate(config)
|
||
|
self.output = BridgeTowerOutput(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
past_key_value=self_attn_past_key_value,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
|
||
|
# if decoder, the last output is tuple of self-attn cache
|
||
|
if self.is_decoder:
|
||
|
outputs = self_attention_outputs[1:-1]
|
||
|
present_key_value = self_attention_outputs[-1]
|
||
|
else:
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
cross_attn_present_key_value = None
|
||
|
if self.is_decoder and encoder_hidden_states is not None:
|
||
|
if not hasattr(self, "crossattention"):
|
||
|
raise ValueError(
|
||
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
||
|
" by setting `config.add_cross_attention=True`"
|
||
|
)
|
||
|
|
||
|
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
||
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
||
|
cross_attention_outputs = self.crossattention(
|
||
|
attention_output,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
cross_attn_past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
attention_output = cross_attention_outputs[0]
|
||
|
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||
|
|
||
|
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
||
|
cross_attn_present_key_value = cross_attention_outputs[-1]
|
||
|
present_key_value = present_key_value + cross_attn_present_key_value
|
||
|
|
||
|
layer_output = apply_chunking_to_forward(
|
||
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||
|
)
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
# if decoder, return the attn key/values as the last output
|
||
|
if self.is_decoder:
|
||
|
outputs = outputs + (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def feed_forward_chunk(self, attention_output):
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
return layer_output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.roberta.modeling_roberta.RobertaEncoder with Roberta->BridgeTowerText
|
||
|
class BridgeTowerTextEncoder(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([BridgeTowerTextLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_dict: Optional[bool] = True,
|
||
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
next_decoder_cache = () if use_cache else None
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
past_key_value = past_key_values[i] if past_key_values is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if use_cache:
|
||
|
next_decoder_cache += (layer_outputs[-1],)
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
if self.config.add_cross_attention:
|
||
|
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [
|
||
|
hidden_states,
|
||
|
next_decoder_cache,
|
||
|
all_hidden_states,
|
||
|
all_self_attentions,
|
||
|
all_cross_attentions,
|
||
|
]
|
||
|
if v is not None
|
||
|
)
|
||
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||
|
last_hidden_state=hidden_states,
|
||
|
past_key_values=next_decoder_cache,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
cross_attentions=all_cross_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->BridgeTowerText
|
||
|
class BridgeTowerTextEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
|
||
|
"""
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
self.register_buffer(
|
||
|
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
|
||
|
)
|
||
|
|
||
|
# End copy
|
||
|
self.padding_idx = config.pad_token_id
|
||
|
self.position_embeddings = nn.Embedding(
|
||
|
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
||
|
):
|
||
|
if position_ids is None:
|
||
|
if input_ids is not None:
|
||
|
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
||
|
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
|
||
|
else:
|
||
|
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
|
||
|
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
seq_length = input_shape[1]
|
||
|
|
||
|
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
||
|
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
||
|
# issue #5664
|
||
|
if token_type_ids is None:
|
||
|
if hasattr(self, "token_type_ids"):
|
||
|
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
||
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
||
|
token_type_ids = buffered_token_type_ids_expanded
|
||
|
else:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + token_type_embeddings
|
||
|
if self.position_embedding_type == "absolute":
|
||
|
position_embeddings = self.position_embeddings(position_ids)
|
||
|
embeddings += position_embeddings
|
||
|
embeddings = self.LayerNorm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
|
||
|
"""
|
||
|
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
||
|
|
||
|
Args:
|
||
|
inputs_embeds: torch.Tensor
|
||
|
|
||
|
Returns: torch.Tensor
|
||
|
"""
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
sequence_length = input_shape[1]
|
||
|
|
||
|
position_ids = torch.arange(
|
||
|
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
||
|
)
|
||
|
return position_ids.unsqueeze(0).expand(input_shape)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
||
|
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
||
|
"""
|
||
|
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
||
|
are ignored. This is modified from fairseq's `utils.make_positions`.
|
||
|
|
||
|
Args:
|
||
|
x: torch.Tensor x:
|
||
|
|
||
|
Returns: torch.Tensor
|
||
|
"""
|
||
|
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
||
|
mask = input_ids.ne(padding_idx).int()
|
||
|
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
||
|
return incremental_indices.long() + padding_idx
|
||
|
|
||
|
|
||
|
class BridgeTowerPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = BridgeTowerConfig
|
||
|
base_model_prefix = "bridgetower"
|
||
|
supports_gradient_checkpointing = False
|
||
|
_no_split_modules = ["BridgeTowerSelfAttention", "BridgeTowerResidualAttention"]
|
||
|
_skip_keys_device_placement = "past_key_values"
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
if isinstance(module, BridgeTowerVisionModel):
|
||
|
proj_std = (module.visual.transformer.hidden_size**-0.5) * (
|
||
|
(2 * module.visual.transformer.num_hidden_layers) ** -0.5
|
||
|
)
|
||
|
attn_std = module.visual.transformer.hidden_size**-0.5
|
||
|
fc_std = (2 * module.visual.transformer.hidden_size) ** -0.5
|
||
|
for block in module.visual.transformer.resblocks:
|
||
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std * self.config.initializer_factor)
|
||
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std * self.config.initializer_factor)
|
||
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std * self.config.initializer_factor)
|
||
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std * self.config.initializer_factor)
|
||
|
|
||
|
nn.init.normal_(module.visual.embeddings.class_embedding, std=attn_std * self.config.initializer_factor)
|
||
|
nn.init.normal_(
|
||
|
module.visual.embeddings.position_embedding.weight, std=attn_std * self.config.initializer_factor
|
||
|
)
|
||
|
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.Embedding)):
|
||
|
module.weight.data.normal_(mean=0.0, std=0.05 * self.config.initializer_factor)
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
|
||
|
class BridgeTowerVisionModel(BridgeTowerPreTrainedModel):
|
||
|
config_class = BridgeTowerVisionConfig
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.visual = BridgeTowerVisionTransformer(config)
|
||
|
|
||
|
@property
|
||
|
def dtype(self):
|
||
|
return self.visual.embeddings.patch_embedding.weight.dtype
|
||
|
|
||
|
def forward(self, image, image_mask=None):
|
||
|
return self.visual(image.type(self.dtype), image_mask)
|
||
|
|
||
|
|
||
|
class BridgeTowerTextModel(BridgeTowerPreTrainedModel):
|
||
|
"""
|
||
|
|
||
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||
|
cross-attention is added between the self-attention layers, following the architecture described in *Attention is
|
||
|
all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
|
||
|
Kaiser and Illia Polosukhin.
|
||
|
|
||
|
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
||
|
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
||
|
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
||
|
|
||
|
.. _*Attention is all you need*: https://arxiv.org/abs/1706.03762
|
||
|
|
||
|
"""
|
||
|
|
||
|
config_class = BridgeTowerTextConfig
|
||
|
|
||
|
def __init__(self, config, add_pooling_layer=True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = BridgeTowerTextEmbeddings(config)
|
||
|
self.encoder = BridgeTowerTextEncoder(config)
|
||
|
|
||
|
self.pooler = BridgeTowerPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embeddings.word_embeddings = value
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
# Copied from transformers.models.roberta.modeling_roberta.RobertaModel.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
||
|
r"""
|
||
|
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||
|
the model is configured as a decoder.
|
||
|
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
||
|
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||
|
|
||
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||
|
`past_key_values`).
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if self.config.is_decoder:
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
else:
|
||
|
use_cache = False
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
batch_size, seq_length = input_shape
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
# past_key_values_length
|
||
|
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
||
|
|
||
|
if token_type_ids is None:
|
||
|
if hasattr(self.embeddings, "token_type_ids"):
|
||
|
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
||
|
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
||
|
token_type_ids = buffered_token_type_ids_expanded
|
||
|
else:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
||
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||
|
|
||
|
# If a 2D or 3D attention mask is provided for the cross-attention
|
||
|
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
||
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||
|
if encoder_attention_mask is None:
|
||
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||
|
else:
|
||
|
encoder_extended_attention_mask = None
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
input_ids=input_ids,
|
||
|
position_ids=position_ids,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
past_key_values_length=past_key_values_length,
|
||
|
)
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_extended_attention_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPoolingAndCrossAttentions(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
past_key_values=encoder_outputs.past_key_values,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
cross_attentions=encoder_outputs.cross_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare BridgeTower Model transformer outputting BridgeTowerModelOutput object without any specific head on"
|
||
|
" top.",
|
||
|
BRIDGETOWER_START_DOCSTRING,
|
||
|
)
|
||
|
class BridgeTowerModel(BridgeTowerPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
vision_config = config.vision_config
|
||
|
text_config = config.text_config
|
||
|
|
||
|
if config.share_cross_modal_transformer_layers:
|
||
|
self.cross_modal_text_transform = nn.Linear(text_config.hidden_size, config.hidden_size)
|
||
|
self.cross_modal_image_transform = nn.Linear(vision_config.hidden_size, config.hidden_size)
|
||
|
else:
|
||
|
self.cross_modal_text_transform = nn.ModuleList(
|
||
|
[nn.Linear(text_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
self.cross_modal_image_transform = nn.ModuleList(
|
||
|
[nn.Linear(vision_config.hidden_size, config.hidden_size) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
|
||
|
self.token_type_embeddings = nn.Embedding(2, config.hidden_size)
|
||
|
|
||
|
self.vision_model = BridgeTowerVisionModel(vision_config)
|
||
|
|
||
|
self.text_model = BridgeTowerTextModel(text_config)
|
||
|
|
||
|
if not vision_config.share_layernorm and config.init_layernorm_from_vision_encoder:
|
||
|
for ln in self.vision_model.visual.cross_modal_ln_separate:
|
||
|
ln.weight.data = self.vision_model.visual.ln_post.weight.data
|
||
|
ln.bias.data = self.vision_model.visual.ln_post.bias.data
|
||
|
|
||
|
self.cross_modal_image_layers = nn.ModuleList(
|
||
|
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
self.cross_modal_text_layers = nn.ModuleList(
|
||
|
[BridgeTowerBertCrossLayer(text_config) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
|
||
|
# Class token => Linear => Tanh
|
||
|
self.cross_modal_image_pooler = BridgeTowerPooler(config)
|
||
|
self.cross_modal_text_pooler = BridgeTowerPooler(config)
|
||
|
|
||
|
# Initialize BridgeTower Components
|
||
|
self.cross_modal_text_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.cross_modal_image_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
if config.share_link_tower_layers:
|
||
|
self.cross_modal_text_link_tower = BridgeTowerLinkTower(config)
|
||
|
self.cross_modal_image_link_tower = BridgeTowerLinkTower(config)
|
||
|
else:
|
||
|
self.cross_modal_text_link_tower = nn.ModuleList(
|
||
|
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
|
||
|
)
|
||
|
self.cross_modal_image_link_tower = nn.ModuleList(
|
||
|
[BridgeTowerLinkTower(config) for _ in range(config.num_hidden_layers - 1)]
|
||
|
)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.text_model.get_input_embeddings()
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.text_model.set_input_embeddings(value)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BridgeTowerModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
image_embeds: Optional[torch.FloatTensor] = None,
|
||
|
image_token_type_idx: Optional[int] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], BridgeTowerModelOutput]:
|
||
|
r"""
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
If set to `True`, hidden states are returned as a list containing the hidden states of text, image, and
|
||
|
cross-modal components respectively. i.e. `(hidden_states_text, hidden_states_image,
|
||
|
hidden_states_cross_modal)` where each element is a list of the hidden states of the corresponding
|
||
|
modality. `hidden_states_txt/img` are a list of tensors corresponding to unimodal hidden states and
|
||
|
`hidden_states_cross_modal` is a list of tuples containing `cross_modal_text_hidden_states` and
|
||
|
`cross_modal_image_hidden_states` of each brdige layer.
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels are currently not supported.
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerModel
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> # prepare image and text
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
>>> text = "hello world"
|
||
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base")
|
||
|
>>> model = BridgeTowerModel.from_pretrained("BridgeTower/bridgetower-base")
|
||
|
|
||
|
>>> inputs = processor(image, text, return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> outputs.keys()
|
||
|
odict_keys(['text_features', 'image_features', 'pooler_output'])
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
all_hidden_states_text = () if output_hidden_states else None
|
||
|
all_hidden_states_image = () if output_hidden_states else None
|
||
|
all_hidden_states_cross = () if output_hidden_states else None
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
image_token_type_idx = image_token_type_idx if image_token_type_idx else 1
|
||
|
input_shape = input_ids.size()
|
||
|
text_embeds = self.text_model.embeddings(input_ids=input_ids)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_text += (text_embeds,)
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, dtype=torch.long, device=input_ids.device)
|
||
|
extend_text_masks = self.text_model.get_extended_attention_mask(attention_mask, input_shape).to(
|
||
|
input_ids.device
|
||
|
)
|
||
|
|
||
|
# The split_index determines how many layers of the uni-modal encoder are applied before the cross-modal encoder
|
||
|
split_index = len(self.text_model.encoder.layer) - self.config.num_hidden_layers + 1
|
||
|
|
||
|
# Run the first 'split_index' layers of the textual encoder
|
||
|
for layer in self.text_model.encoder.layer[:split_index]:
|
||
|
text_embeds = layer(text_embeds, extend_text_masks)[0]
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_text += (text_embeds,)
|
||
|
|
||
|
if image_embeds is None:
|
||
|
image_embeds = self.vision_model.visual.forward_pre(pixel_values.type(self.vision_model.dtype))
|
||
|
else:
|
||
|
# Permute as BridgeTowerResidualAttention has batch_first=True
|
||
|
image_embeds = image_embeds.permute(1, 0, 2)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_image += (image_embeds,)
|
||
|
|
||
|
# Run the first 'split_index' layers of the visual encoder
|
||
|
for block in self.vision_model.visual.transformer.resblocks[:split_index]:
|
||
|
image_embeds = block(image_embeds)
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_image += (image_embeds,)
|
||
|
|
||
|
image_embeds_with_ln = self.vision_model.visual.forward_post(image_embeds.type(self.vision_model.dtype))
|
||
|
|
||
|
# first layer is a special case because we don't have the output from the cross-encoder yet
|
||
|
cross_modal_text = self.cross_modal_text_transform(text_embeds)
|
||
|
|
||
|
text_token_type_embeddings = self.token_type_embeddings(
|
||
|
torch.zeros(1, dtype=torch.long, device=input_ids.device)
|
||
|
).expand_as(cross_modal_text)
|
||
|
|
||
|
cross_modal_text = self.cross_modal_text_layernorm(cross_modal_text + text_token_type_embeddings)
|
||
|
|
||
|
image_embeds_with_ln = self.cross_modal_image_transform(image_embeds_with_ln)
|
||
|
image_token_type_embeddings = self.token_type_embeddings(
|
||
|
torch.full((1,), image_token_type_idx, dtype=torch.long, device=input_ids.device)
|
||
|
).expand_as(image_embeds_with_ln)
|
||
|
|
||
|
image_embeds_with_ln = image_embeds_with_ln + image_token_type_embeddings
|
||
|
cross_modal_image = self.cross_modal_image_layernorm(image_embeds_with_ln)
|
||
|
|
||
|
pixel_mask = torch.ones(
|
||
|
(cross_modal_image.size(0), cross_modal_image.size(1)),
|
||
|
dtype=torch.long,
|
||
|
device=input_ids.device,
|
||
|
)
|
||
|
extend_image_masks = self.text_model.get_extended_attention_mask(pixel_mask, pixel_mask.size()).to(
|
||
|
input_ids.device
|
||
|
)
|
||
|
|
||
|
layer_outputs_text = self.cross_modal_text_layers[0](
|
||
|
cross_modal_text,
|
||
|
cross_modal_image,
|
||
|
attention_mask=extend_text_masks,
|
||
|
encoder_attention_mask=extend_image_masks,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
cross_text_features = layer_outputs_text[0]
|
||
|
|
||
|
layer_outputs_image = self.cross_modal_image_layers[0](
|
||
|
cross_modal_image,
|
||
|
cross_modal_text,
|
||
|
attention_mask=extend_image_masks,
|
||
|
encoder_attention_mask=extend_text_masks,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
cross_image_features = layer_outputs_image[0]
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_cross += ((cross_text_features, cross_image_features),)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
|
||
|
|
||
|
link_layer_index = 0
|
||
|
|
||
|
# Each of the top 6 layers of the visual and textual encoders ([split_index:]) is connected to each layer of
|
||
|
# the cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder.
|
||
|
for i in range(split_index, len(self.text_model.encoder.layer)):
|
||
|
text_embeds = self.text_model.encoder.layer[i](text_embeds, extend_text_masks)[0]
|
||
|
image_embeds = self.vision_model.visual.transformer.resblocks[i](image_embeds).type(
|
||
|
self.vision_model.dtype
|
||
|
)
|
||
|
image_embeds_with_ln = (
|
||
|
self.cross_modal_image_transform(self.vision_model.visual.forward_post(image_embeds))
|
||
|
+ image_token_type_embeddings
|
||
|
)
|
||
|
|
||
|
text_link_tower = self.cross_modal_text_link_tower[link_layer_index]
|
||
|
image_link_tower = self.cross_modal_image_link_tower[link_layer_index]
|
||
|
|
||
|
# Bridge layers for textual and visual encoders
|
||
|
cross_text_features_ = text_link_tower(
|
||
|
self.cross_modal_text_transform(text_embeds) + text_token_type_embeddings,
|
||
|
cross_text_features,
|
||
|
extend_text_masks,
|
||
|
)
|
||
|
cross_image_features_ = image_link_tower(image_embeds_with_ln, cross_image_features, extend_image_masks)
|
||
|
|
||
|
# Cross-modal encoder via bridge layers of textual and visual encoders
|
||
|
layer_outputs_text = self.cross_modal_text_layers[link_layer_index + 1](
|
||
|
cross_text_features_,
|
||
|
cross_image_features_,
|
||
|
attention_mask=extend_text_masks,
|
||
|
encoder_attention_mask=extend_image_masks,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
cross_text_features = layer_outputs_text[0]
|
||
|
|
||
|
layer_outputs_image = self.cross_modal_image_layers[link_layer_index + 1](
|
||
|
cross_image_features_,
|
||
|
cross_text_features_,
|
||
|
attention_mask=extend_image_masks,
|
||
|
encoder_attention_mask=extend_text_masks,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
cross_image_features = layer_outputs_image[0]
|
||
|
|
||
|
link_layer_index += 1
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states_text += (text_embeds,)
|
||
|
all_hidden_states_image += (image_embeds,)
|
||
|
all_hidden_states_cross += ((cross_text_features, cross_image_features),)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions += ((layer_outputs_text[1], layer_outputs_image[1]),)
|
||
|
|
||
|
# Concatenate the cls token of the text and image features to get the final represtation
|
||
|
text_features, image_features = cross_text_features, cross_image_features
|
||
|
cls_features = self.get_cls_features(text_features, image_features)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = (all_hidden_states_text, all_hidden_states_image, all_hidden_states_cross)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(
|
||
|
v
|
||
|
for v in [text_features, image_features, cls_features, all_hidden_states, all_self_attentions]
|
||
|
if v is not None
|
||
|
)
|
||
|
|
||
|
return BridgeTowerModelOutput(
|
||
|
text_features=text_features,
|
||
|
image_features=image_features,
|
||
|
pooler_output=cls_features,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
def get_cls_features(self, text_features, image_features):
|
||
|
cls_features_text = self.cross_modal_text_pooler(text_features)
|
||
|
cls_features_image = self.cross_modal_image_pooler(image_features)
|
||
|
return torch.cat([cls_features_text, cls_features_image], dim=-1)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vilt.modeling_vilt.ViltPredictionHeadTransform with Vilt->BridgeTower
|
||
|
class BridgeTowerPredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BridgeTowerMLMHead(nn.Module):
|
||
|
def __init__(self, config, weight=None):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.transform = BridgeTowerPredictionHeadTransform(config)
|
||
|
self.decoder = nn.Linear(config.hidden_size, config.text_config.vocab_size, bias=False)
|
||
|
self.bias = nn.Parameter(torch.zeros(config.text_config.vocab_size))
|
||
|
if weight is not None:
|
||
|
self.decoder.weight = weight
|
||
|
|
||
|
def forward(self, x):
|
||
|
mlm_score = self.transform(x)
|
||
|
mlm_score = self.decoder(mlm_score) + self.bias
|
||
|
return mlm_score
|
||
|
|
||
|
|
||
|
class BridgeTowerITMHead(nn.Module):
|
||
|
def __init__(self, hidden_size):
|
||
|
super().__init__()
|
||
|
self.fc = nn.Linear(hidden_size, 2)
|
||
|
|
||
|
def forward(self, x):
|
||
|
itm_score = self.fc(x)
|
||
|
return itm_score
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BridgeTower Model with a language modeling head on top as done during pretraining.
|
||
|
""",
|
||
|
BRIDGETOWER_START_DOCSTRING,
|
||
|
)
|
||
|
class BridgeTowerForMaskedLM(BridgeTowerPreTrainedModel):
|
||
|
_tied_weights_keys = ["mlm_score.decoder.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.bridgetower = BridgeTowerModel(config)
|
||
|
self.mlm_score = BridgeTowerMLMHead(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.mlm_score.decoder
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.mlm_score.decoder = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
image_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[MaskedLMOutput, Tuple[torch.FloatTensor]]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
||
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
||
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000360943.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
||
|
>>> text = "a <mask> looking out of the window"
|
||
|
|
||
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
|
||
|
>>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
|
||
|
|
||
|
>>> # prepare inputs
|
||
|
>>> encoding = processor(image, text, return_tensors="pt")
|
||
|
|
||
|
>>> # forward pass
|
||
|
>>> outputs = model(**encoding)
|
||
|
|
||
|
>>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist())
|
||
|
|
||
|
>>> print(results)
|
||
|
.a cat looking out of the window.
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
outputs = self.bridgetower(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
pixel_values=pixel_values,
|
||
|
pixel_mask=pixel_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
mlm_logits = self.mlm_score(outputs.text_features if return_dict else outputs[0])
|
||
|
masked_lm_loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
||
|
|
||
|
labels = labels.to(mlm_logits.device)
|
||
|
masked_lm_loss = loss_fct(mlm_logits.view(-1, self.config.text_config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = tuple(mlm_logits)
|
||
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
||
|
|
||
|
return MaskedLMOutput(
|
||
|
loss=masked_lm_loss,
|
||
|
logits=mlm_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BridgeTower Model transformer with a classifier head on top (a linear layer on top of the final hidden state of the
|
||
|
[CLS] token) for image-to-text matching.
|
||
|
""",
|
||
|
BRIDGETOWER_START_DOCSTRING,
|
||
|
)
|
||
|
class BridgeTowerForImageAndTextRetrieval(BridgeTowerPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.bridgetower = BridgeTowerModel(config)
|
||
|
|
||
|
self.itm_score = BridgeTowerITMHead(config.hidden_size * 2)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
image_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
) -> Union[SequenceClassifierOutput, Tuple[torch.FloatTensor]]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*):
|
||
|
Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match.
|
||
|
The pairs with 0 will be skipped for calculation.
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval
|
||
|
>>> import requests
|
||
|
>>> from PIL import Image
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
>>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"]
|
||
|
|
||
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
|
||
|
>>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm")
|
||
|
|
||
|
>>> # forward pass
|
||
|
>>> scores = dict()
|
||
|
>>> for text in texts:
|
||
|
... # prepare inputs
|
||
|
... encoding = processor(image, text, return_tensors="pt")
|
||
|
... outputs = model(**encoding)
|
||
|
... scores[text] = outputs.logits[0, 1].item()
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.bridgetower(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
pixel_values=pixel_values,
|
||
|
pixel_mask=pixel_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooler_output = outputs.pooler_output if return_dict else outputs[2]
|
||
|
|
||
|
logits = self.itm_score(pooler_output)
|
||
|
|
||
|
itm_loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
|
||
|
labels = labels.to(logits.device)
|
||
|
itm_loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = tuple(logits)
|
||
|
return ((itm_loss,) + output) if itm_loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=itm_loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class BridgeTowerContrastiveHead(nn.Module):
|
||
|
def __init__(self, hidden_size, embed_size):
|
||
|
super().__init__()
|
||
|
self.fc = nn.Linear(hidden_size, embed_size)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.fc(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
BridgeTower Model with a image-text contrastive head on top computing image-text contrastive loss.
|
||
|
""",
|
||
|
BRIDGETOWER_START_DOCSTRING,
|
||
|
)
|
||
|
class BridgeTowerForContrastiveLearning(BridgeTowerPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.bridgetower = BridgeTowerModel(config)
|
||
|
|
||
|
self.itc_text_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
|
||
|
self.itc_image_head = BridgeTowerContrastiveHead(config.hidden_size, config.contrastive_hidden_size)
|
||
|
self.itc_cross_modal_head = BridgeTowerContrastiveHead(config.hidden_size * 2, config.contrastive_hidden_size)
|
||
|
|
||
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(BRIDGETOWER_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BridgeTowerContrastiveOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
pixel_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
image_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = True,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
) -> Union[BridgeTowerContrastiveOutput, Tuple[torch.FloatTensor]]:
|
||
|
r"""
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether or not to return the contrastive loss.
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning
|
||
|
>>> import requests
|
||
|
>>> from PIL import Image
|
||
|
>>> import torch
|
||
|
|
||
|
>>> image_urls = [
|
||
|
... "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg",
|
||
|
... "http://images.cocodataset.org/val2017/000000039769.jpg",
|
||
|
... ]
|
||
|
>>> texts = ["two dogs in a car", "two cats sleeping on a couch"]
|
||
|
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls]
|
||
|
|
||
|
>>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
|
||
|
>>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc")
|
||
|
|
||
|
>>> inputs = processor(images, texts, padding=True, return_tensors="pt")
|
||
|
>>> loss = model(**inputs, return_loss=True).loss
|
||
|
|
||
|
>>> inputs = processor(images, texts[::-1], padding=True, return_tensors="pt")
|
||
|
>>> loss_swapped = model(**inputs, return_loss=True).loss
|
||
|
|
||
|
>>> print("Loss", round(loss.item(), 4))
|
||
|
Loss 0.0019
|
||
|
|
||
|
>>> print("Loss with swapped images", round(loss_swapped.item(), 4))
|
||
|
Loss with swapped images 2.126
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.bridgetower(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
pixel_values=pixel_values,
|
||
|
pixel_mask=pixel_mask,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=True,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooler_output = outputs.pooler_output if return_dict else outputs[2]
|
||
|
hidden_states_txt, hidden_states_img, hidden_states_cross_modal = (
|
||
|
outputs.hidden_states if return_dict else outputs[3]
|
||
|
)
|
||
|
|
||
|
text_embeds = hidden_states_txt[-1]
|
||
|
image_embeds = hidden_states_img[-1]
|
||
|
|
||
|
image_embeds_with_ln = self.bridgetower.vision_model.visual.forward_post(image_embeds)
|
||
|
image_token_type_embeddings = self.bridgetower.token_type_embeddings(
|
||
|
torch.full((1,), 1, dtype=torch.long, device=self.bridgetower.token_type_embeddings.weight.device)
|
||
|
).expand_as(image_embeds_with_ln)
|
||
|
|
||
|
image_embeds = self.bridgetower.cross_modal_image_transform(image_embeds_with_ln) + image_token_type_embeddings
|
||
|
|
||
|
# normalized features
|
||
|
text_embeds = nn.functional.normalize(self.itc_text_head(text_embeds[:, 0, :]), dim=-1, p=2)
|
||
|
image_embeds = nn.functional.normalize(self.itc_image_head(image_embeds[:, 0, :]), dim=-1, p=2).to(
|
||
|
device=text_embeds.device
|
||
|
)
|
||
|
cross_embeds = nn.functional.normalize(self.itc_cross_modal_head(pooler_output), dim=-1, p=2).to(
|
||
|
device=text_embeds.device
|
||
|
)
|
||
|
|
||
|
logits = torch.stack([text_embeds, image_embeds, cross_embeds], dim=-2)
|
||
|
|
||
|
logit_scale = self.logit_scale.exp().to(device=text_embeds.device)
|
||
|
logits_text_to_image = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
||
|
logits_text_to_cross = torch.matmul(text_embeds, cross_embeds.t()) * logit_scale
|
||
|
logits_image_to_cross = torch.matmul(image_embeds, cross_embeds.t()) * logit_scale
|
||
|
|
||
|
itc_loss = None
|
||
|
|
||
|
if return_loss:
|
||
|
labels = torch.arange(len(logits), device=logits.device)
|
||
|
text_to_image_loss = nn.functional.cross_entropy(logits_text_to_image, labels)
|
||
|
text_to_cross_loss = nn.functional.cross_entropy(logits_text_to_cross, labels)
|
||
|
image_to_cross_loss = nn.functional.cross_entropy(logits_image_to_cross, labels)
|
||
|
itc_loss = (text_to_image_loss + text_to_cross_loss + image_to_cross_loss) / 3.0
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits, text_embeds, image_embeds, cross_embeds) + outputs[3:]
|
||
|
return ((itc_loss,) + output) if itc_loss is not None else output
|
||
|
|
||
|
return BridgeTowerContrastiveOutput(
|
||
|
loss=itc_loss,
|
||
|
logits=logits,
|
||
|
text_embeds=text_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
cross_embeds=cross_embeds,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|