1646 lines
72 KiB
Python
1646 lines
72 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2021 Google AI The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch CANINE model."""
|
||
|
|
||
|
|
||
|
import copy
|
||
|
import math
|
||
|
import os
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
ModelOutput,
|
||
|
MultipleChoiceModelOutput,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import (
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_canine import CanineConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "google/canine-s"
|
||
|
_CONFIG_FOR_DOC = "CanineConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import CANINE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Support up to 16 hash functions.
|
||
|
_PRIMES = [31, 43, 59, 61, 73, 97, 103, 113, 137, 149, 157, 173, 181, 193, 211, 223]
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CanineModelOutputWithPooling(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`CanineModel`]. Based on [`~modeling_outputs.BaseModelOutputWithPooling`], but with slightly
|
||
|
different `hidden_states` and `attentions`, as these also include the hidden states and attentions of the shallow
|
||
|
Transformer encoders.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model (i.e. the output of the final
|
||
|
shallow Transformer encoder).
|
||
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
||
|
Hidden-state of the first token of the sequence (classification token) at the last layer of the deep
|
||
|
Transformer encoder, further processed by a Linear layer and a Tanh activation function. The Linear layer
|
||
|
weights are trained from the next sentence prediction (classification) objective during pretraining.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the input to each encoder + one for the output of each layer of each
|
||
|
encoder) of shape `(batch_size, sequence_length, hidden_size)` and `(batch_size, sequence_length //
|
||
|
config.downsampling_rate, hidden_size)`. Hidden-states of the model at the output of each layer plus the
|
||
|
initial input to each Transformer encoder. The hidden states of the shallow encoders have length
|
||
|
`sequence_length`, but the hidden states of the deep encoder have length `sequence_length` //
|
||
|
`config.downsampling_rate`.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of the 3 Transformer encoders of shape `(batch_size,
|
||
|
num_heads, sequence_length, sequence_length)` and `(batch_size, num_heads, sequence_length //
|
||
|
config.downsampling_rate, sequence_length // config.downsampling_rate)`. Attentions weights after the
|
||
|
attention softmax, used to compute the weighted average in the self-attention heads.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
pooler_output: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
def load_tf_weights_in_canine(model, config, tf_checkpoint_path):
|
||
|
"""Load tf checkpoints in a pytorch model."""
|
||
|
try:
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
except ImportError:
|
||
|
logger.error(
|
||
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
||
|
"https://www.tensorflow.org/install/ for installation instructions."
|
||
|
)
|
||
|
raise
|
||
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
||
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
||
|
# Load weights from TF model
|
||
|
init_vars = tf.train.list_variables(tf_path)
|
||
|
names = []
|
||
|
arrays = []
|
||
|
for name, shape in init_vars:
|
||
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
||
|
array = tf.train.load_variable(tf_path, name)
|
||
|
names.append(name)
|
||
|
arrays.append(array)
|
||
|
|
||
|
for name, array in zip(names, arrays):
|
||
|
name = name.split("/")
|
||
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
||
|
# which are not required for using pretrained model
|
||
|
# also discard the cls weights (which were used for the next sentence prediction pre-training task)
|
||
|
if any(
|
||
|
n
|
||
|
in [
|
||
|
"adam_v",
|
||
|
"adam_m",
|
||
|
"AdamWeightDecayOptimizer",
|
||
|
"AdamWeightDecayOptimizer_1",
|
||
|
"global_step",
|
||
|
"cls",
|
||
|
"autoregressive_decoder",
|
||
|
"char_output_weights",
|
||
|
]
|
||
|
for n in name
|
||
|
):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
# if first scope name starts with "bert", change it to "encoder"
|
||
|
if name[0] == "bert":
|
||
|
name[0] = "encoder"
|
||
|
# remove "embeddings" middle name of HashBucketCodepointEmbedders
|
||
|
elif name[1] == "embeddings":
|
||
|
name.remove(name[1])
|
||
|
# rename segment_embeddings to token_type_embeddings
|
||
|
elif name[1] == "segment_embeddings":
|
||
|
name[1] = "token_type_embeddings"
|
||
|
# rename initial convolutional projection layer
|
||
|
elif name[1] == "initial_char_encoder":
|
||
|
name = ["chars_to_molecules"] + name[-2:]
|
||
|
# rename final convolutional projection layer
|
||
|
elif name[0] == "final_char_encoder" and name[1] in ["LayerNorm", "conv"]:
|
||
|
name = ["projection"] + name[1:]
|
||
|
pointer = model
|
||
|
for m_name in name:
|
||
|
if (re.fullmatch(r"[A-Za-z]+_\d+", m_name)) and "Embedder" not in m_name:
|
||
|
scope_names = re.split(r"_(\d+)", m_name)
|
||
|
else:
|
||
|
scope_names = [m_name]
|
||
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
||
|
pointer = getattr(pointer, "bias")
|
||
|
elif scope_names[0] == "output_weights":
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
else:
|
||
|
try:
|
||
|
pointer = getattr(pointer, scope_names[0])
|
||
|
except AttributeError:
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
if len(scope_names) >= 2:
|
||
|
num = int(scope_names[1])
|
||
|
pointer = pointer[num]
|
||
|
if m_name[-11:] == "_embeddings":
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif m_name[-10:] in [f"Embedder_{i}" for i in range(8)]:
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif m_name == "kernel":
|
||
|
array = np.transpose(array)
|
||
|
|
||
|
if pointer.shape != array.shape:
|
||
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
||
|
|
||
|
logger.info(f"Initialize PyTorch weight {name}")
|
||
|
pointer.data = torch.from_numpy(array)
|
||
|
return model
|
||
|
|
||
|
|
||
|
class CanineEmbeddings(nn.Module):
|
||
|
"""Construct the character, position and token_type embeddings."""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
# character embeddings
|
||
|
shard_embedding_size = config.hidden_size // config.num_hash_functions
|
||
|
for i in range(config.num_hash_functions):
|
||
|
name = f"HashBucketCodepointEmbedder_{i}"
|
||
|
setattr(self, name, nn.Embedding(config.num_hash_buckets, shard_embedding_size))
|
||
|
self.char_position_embeddings = nn.Embedding(config.num_hash_buckets, config.hidden_size)
|
||
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||
|
|
||
|
def _hash_bucket_tensors(self, input_ids, num_hashes: int, num_buckets: int):
|
||
|
"""
|
||
|
Converts ids to hash bucket ids via multiple hashing.
|
||
|
|
||
|
Args:
|
||
|
input_ids: The codepoints or other IDs to be hashed.
|
||
|
num_hashes: The number of hash functions to use.
|
||
|
num_buckets: The number of hash buckets (i.e. embeddings in each table).
|
||
|
|
||
|
Returns:
|
||
|
A list of tensors, each of which is the hash bucket IDs from one hash function.
|
||
|
"""
|
||
|
if num_hashes > len(_PRIMES):
|
||
|
raise ValueError(f"`num_hashes` must be <= {len(_PRIMES)}")
|
||
|
|
||
|
primes = _PRIMES[:num_hashes]
|
||
|
|
||
|
result_tensors = []
|
||
|
for prime in primes:
|
||
|
hashed = ((input_ids + 1) * prime) % num_buckets
|
||
|
result_tensors.append(hashed)
|
||
|
return result_tensors
|
||
|
|
||
|
def _embed_hash_buckets(self, input_ids, embedding_size: int, num_hashes: int, num_buckets: int):
|
||
|
"""Converts IDs (e.g. codepoints) into embeddings via multiple hashing."""
|
||
|
if embedding_size % num_hashes != 0:
|
||
|
raise ValueError(f"Expected `embedding_size` ({embedding_size}) % `num_hashes` ({num_hashes}) == 0")
|
||
|
|
||
|
hash_bucket_tensors = self._hash_bucket_tensors(input_ids, num_hashes=num_hashes, num_buckets=num_buckets)
|
||
|
embedding_shards = []
|
||
|
for i, hash_bucket_ids in enumerate(hash_bucket_tensors):
|
||
|
name = f"HashBucketCodepointEmbedder_{i}"
|
||
|
shard_embeddings = getattr(self, name)(hash_bucket_ids)
|
||
|
embedding_shards.append(shard_embeddings)
|
||
|
|
||
|
return torch.cat(embedding_shards, dim=-1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
seq_length = input_shape[1]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self._embed_hash_buckets(
|
||
|
input_ids, self.config.hidden_size, self.config.num_hash_functions, self.config.num_hash_buckets
|
||
|
)
|
||
|
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + token_type_embeddings
|
||
|
|
||
|
if self.position_embedding_type == "absolute":
|
||
|
position_embeddings = self.char_position_embeddings(position_ids)
|
||
|
embeddings += position_embeddings
|
||
|
embeddings = self.LayerNorm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class CharactersToMolecules(nn.Module):
|
||
|
"""Convert character sequence to initial molecule sequence (i.e. downsample) using strided convolutions."""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
in_channels=config.hidden_size,
|
||
|
out_channels=config.hidden_size,
|
||
|
kernel_size=config.downsampling_rate,
|
||
|
stride=config.downsampling_rate,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.hidden_act]
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, char_encoding: torch.Tensor) -> torch.Tensor:
|
||
|
# `cls_encoding`: [batch, 1, hidden_size]
|
||
|
cls_encoding = char_encoding[:, 0:1, :]
|
||
|
|
||
|
# char_encoding has shape [batch, char_seq, hidden_size]
|
||
|
# We transpose it to be [batch, hidden_size, char_seq]
|
||
|
char_encoding = torch.transpose(char_encoding, 1, 2)
|
||
|
downsampled = self.conv(char_encoding)
|
||
|
downsampled = torch.transpose(downsampled, 1, 2)
|
||
|
downsampled = self.activation(downsampled)
|
||
|
|
||
|
# Truncate the last molecule in order to reserve a position for [CLS].
|
||
|
# Often, the last position is never used (unless we completely fill the
|
||
|
# text buffer). This is important in order to maintain alignment on TPUs
|
||
|
# (i.e. a multiple of 128).
|
||
|
downsampled_truncated = downsampled[:, 0:-1, :]
|
||
|
|
||
|
# We also keep [CLS] as a separate sequence position since we always
|
||
|
# want to reserve a position (and the model capacity that goes along
|
||
|
# with that) in the deep BERT stack.
|
||
|
# `result`: [batch, molecule_seq, molecule_dim]
|
||
|
result = torch.cat([cls_encoding, downsampled_truncated], dim=1)
|
||
|
|
||
|
result = self.LayerNorm(result)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class ConvProjection(nn.Module):
|
||
|
"""
|
||
|
Project representations from hidden_size*2 back to hidden_size across a window of w = config.upsampling_kernel_size
|
||
|
characters.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.conv = nn.Conv1d(
|
||
|
in_channels=config.hidden_size * 2,
|
||
|
out_channels=config.hidden_size,
|
||
|
kernel_size=config.upsampling_kernel_size,
|
||
|
stride=1,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.hidden_act]
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs: torch.Tensor,
|
||
|
final_seq_char_positions: Optional[torch.Tensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
# inputs has shape [batch, mol_seq, molecule_hidden_size+char_hidden_final]
|
||
|
# we transpose it to be [batch, molecule_hidden_size+char_hidden_final, mol_seq]
|
||
|
inputs = torch.transpose(inputs, 1, 2)
|
||
|
|
||
|
# PyTorch < 1.9 does not support padding="same" (which is used in the original implementation),
|
||
|
# so we pad the tensor manually before passing it to the conv layer
|
||
|
# based on https://github.com/google-research/big_transfer/blob/49afe42338b62af9fbe18f0258197a33ee578a6b/bit_tf2/models.py#L36-L38
|
||
|
pad_total = self.config.upsampling_kernel_size - 1
|
||
|
pad_beg = pad_total // 2
|
||
|
pad_end = pad_total - pad_beg
|
||
|
|
||
|
pad = nn.ConstantPad1d((pad_beg, pad_end), 0)
|
||
|
# `result`: shape (batch_size, char_seq_len, hidden_size)
|
||
|
result = self.conv(pad(inputs))
|
||
|
result = torch.transpose(result, 1, 2)
|
||
|
result = self.activation(result)
|
||
|
result = self.LayerNorm(result)
|
||
|
result = self.dropout(result)
|
||
|
final_char_seq = result
|
||
|
|
||
|
if final_seq_char_positions is not None:
|
||
|
# Limit transformer query seq and attention mask to these character
|
||
|
# positions to greatly reduce the compute cost. Typically, this is just
|
||
|
# done for the MLM training task.
|
||
|
# TODO add support for MLM
|
||
|
raise NotImplementedError("CanineForMaskedLM is currently not supported")
|
||
|
else:
|
||
|
query_seq = final_char_seq
|
||
|
|
||
|
return query_seq
|
||
|
|
||
|
|
||
|
class CanineSelfAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
||
|
f"heads ({config.num_attention_heads})"
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
||
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||
|
self.max_position_embeddings = config.max_position_embeddings
|
||
|
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
||
|
|
||
|
def transpose_for_scores(self, x):
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
from_tensor: torch.Tensor,
|
||
|
to_tensor: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||
|
mixed_query_layer = self.query(from_tensor)
|
||
|
|
||
|
# If this is instantiated as a cross-attention module, the keys
|
||
|
# and values come from an encoder; the attention mask needs to be
|
||
|
# such that the encoder's padding tokens are not attended to.
|
||
|
|
||
|
key_layer = self.transpose_for_scores(self.key(to_tensor))
|
||
|
value_layer = self.transpose_for_scores(self.value(to_tensor))
|
||
|
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
|
||
|
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
||
|
seq_length = from_tensor.size()[1]
|
||
|
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(-1, 1)
|
||
|
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=from_tensor.device).view(1, -1)
|
||
|
distance = position_ids_l - position_ids_r
|
||
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
||
|
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
||
|
|
||
|
if self.position_embedding_type == "relative_key":
|
||
|
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||
|
attention_scores = attention_scores + relative_position_scores
|
||
|
elif self.position_embedding_type == "relative_key_query":
|
||
|
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
||
|
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
||
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
||
|
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.ndim == 3:
|
||
|
# if attention_mask is 3D, do the following:
|
||
|
attention_mask = torch.unsqueeze(attention_mask, dim=1)
|
||
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||
|
# masked positions, this operation will create a tensor which is 0.0 for
|
||
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
||
|
attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min
|
||
|
# Apply the attention mask (precomputed for all layers in CanineModel forward() function)
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class CanineSelfOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(
|
||
|
self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor
|
||
|
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CanineAttention(nn.Module):
|
||
|
"""
|
||
|
Additional arguments related to local attention:
|
||
|
|
||
|
- **local** (`bool`, *optional*, defaults to `False`) -- Whether to apply local attention.
|
||
|
- **always_attend_to_first_position** (`bool`, *optional*, defaults to `False`) -- Should all blocks be able to
|
||
|
attend
|
||
|
to the `to_tensor`'s first position (e.g. a [CLS] position)? - **first_position_attends_to_all** (`bool`,
|
||
|
*optional*, defaults to `False`) -- Should the *from_tensor*'s first position be able to attend to all
|
||
|
positions within the *from_tensor*? - **attend_from_chunk_width** (`int`, *optional*, defaults to 128) -- The
|
||
|
width of each block-wise chunk in `from_tensor`. - **attend_from_chunk_stride** (`int`, *optional*, defaults to
|
||
|
128) -- The number of elements to skip when moving to the next block in `from_tensor`. -
|
||
|
**attend_to_chunk_width** (`int`, *optional*, defaults to 128) -- The width of each block-wise chunk in
|
||
|
*to_tensor*. - **attend_to_chunk_stride** (`int`, *optional*, defaults to 128) -- The number of elements to
|
||
|
skip when moving to the next block in `to_tensor`.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config,
|
||
|
local=False,
|
||
|
always_attend_to_first_position: bool = False,
|
||
|
first_position_attends_to_all: bool = False,
|
||
|
attend_from_chunk_width: int = 128,
|
||
|
attend_from_chunk_stride: int = 128,
|
||
|
attend_to_chunk_width: int = 128,
|
||
|
attend_to_chunk_stride: int = 128,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.self = CanineSelfAttention(config)
|
||
|
self.output = CanineSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
# additional arguments related to local attention
|
||
|
self.local = local
|
||
|
if attend_from_chunk_width < attend_from_chunk_stride:
|
||
|
raise ValueError(
|
||
|
"`attend_from_chunk_width` < `attend_from_chunk_stride` would cause sequence positions to get skipped."
|
||
|
)
|
||
|
if attend_to_chunk_width < attend_to_chunk_stride:
|
||
|
raise ValueError(
|
||
|
"`attend_to_chunk_width` < `attend_to_chunk_stride`would cause sequence positions to get skipped."
|
||
|
)
|
||
|
self.always_attend_to_first_position = always_attend_to_first_position
|
||
|
self.first_position_attends_to_all = first_position_attends_to_all
|
||
|
self.attend_from_chunk_width = attend_from_chunk_width
|
||
|
self.attend_from_chunk_stride = attend_from_chunk_stride
|
||
|
self.attend_to_chunk_width = attend_to_chunk_width
|
||
|
self.attend_to_chunk_stride = attend_to_chunk_stride
|
||
|
|
||
|
def prune_heads(self, heads):
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.self.query = prune_linear_layer(self.self.query, index)
|
||
|
self.self.key = prune_linear_layer(self.self.key, index)
|
||
|
self.self.value = prune_linear_layer(self.self.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: Tuple[torch.FloatTensor],
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
||
|
if not self.local:
|
||
|
self_outputs = self.self(hidden_states, hidden_states, attention_mask, head_mask, output_attentions)
|
||
|
attention_output = self_outputs[0]
|
||
|
else:
|
||
|
from_seq_length = to_seq_length = hidden_states.shape[1]
|
||
|
from_tensor = to_tensor = hidden_states
|
||
|
|
||
|
# Create chunks (windows) that we will attend *from* and then concatenate them.
|
||
|
from_chunks = []
|
||
|
if self.first_position_attends_to_all:
|
||
|
from_chunks.append((0, 1))
|
||
|
# We must skip this first position so that our output sequence is the
|
||
|
# correct length (this matters in the *from* sequence only).
|
||
|
from_start = 1
|
||
|
else:
|
||
|
from_start = 0
|
||
|
for chunk_start in range(from_start, from_seq_length, self.attend_from_chunk_stride):
|
||
|
chunk_end = min(from_seq_length, chunk_start + self.attend_from_chunk_width)
|
||
|
from_chunks.append((chunk_start, chunk_end))
|
||
|
|
||
|
# Determine the chunks (windows) that will attend *to*.
|
||
|
to_chunks = []
|
||
|
if self.first_position_attends_to_all:
|
||
|
to_chunks.append((0, to_seq_length))
|
||
|
for chunk_start in range(0, to_seq_length, self.attend_to_chunk_stride):
|
||
|
chunk_end = min(to_seq_length, chunk_start + self.attend_to_chunk_width)
|
||
|
to_chunks.append((chunk_start, chunk_end))
|
||
|
|
||
|
if len(from_chunks) != len(to_chunks):
|
||
|
raise ValueError(
|
||
|
f"Expected to have same number of `from_chunks` ({from_chunks}) and "
|
||
|
f"`to_chunks` ({from_chunks}). Check strides."
|
||
|
)
|
||
|
|
||
|
# next, compute attention scores for each pair of windows and concatenate
|
||
|
attention_output_chunks = []
|
||
|
attention_probs_chunks = []
|
||
|
for (from_start, from_end), (to_start, to_end) in zip(from_chunks, to_chunks):
|
||
|
from_tensor_chunk = from_tensor[:, from_start:from_end, :]
|
||
|
to_tensor_chunk = to_tensor[:, to_start:to_end, :]
|
||
|
# `attention_mask`: <float>[batch_size, from_seq, to_seq]
|
||
|
# `attention_mask_chunk`: <float>[batch_size, from_seq_chunk, to_seq_chunk]
|
||
|
attention_mask_chunk = attention_mask[:, from_start:from_end, to_start:to_end]
|
||
|
if self.always_attend_to_first_position:
|
||
|
cls_attention_mask = attention_mask[:, from_start:from_end, 0:1]
|
||
|
attention_mask_chunk = torch.cat([cls_attention_mask, attention_mask_chunk], dim=2)
|
||
|
|
||
|
cls_position = to_tensor[:, 0:1, :]
|
||
|
to_tensor_chunk = torch.cat([cls_position, to_tensor_chunk], dim=1)
|
||
|
|
||
|
attention_outputs_chunk = self.self(
|
||
|
from_tensor_chunk, to_tensor_chunk, attention_mask_chunk, head_mask, output_attentions
|
||
|
)
|
||
|
attention_output_chunks.append(attention_outputs_chunk[0])
|
||
|
if output_attentions:
|
||
|
attention_probs_chunks.append(attention_outputs_chunk[1])
|
||
|
|
||
|
attention_output = torch.cat(attention_output_chunks, dim=1)
|
||
|
|
||
|
attention_output = self.output(attention_output, hidden_states)
|
||
|
outputs = (attention_output,)
|
||
|
if not self.local:
|
||
|
outputs = outputs + self_outputs[1:] # add attentions if we output them
|
||
|
else:
|
||
|
outputs = outputs + tuple(attention_probs_chunks) # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class CanineIntermediate(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CanineOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: Tuple[torch.FloatTensor], input_tensor: torch.FloatTensor) -> torch.FloatTensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CanineLayer(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config,
|
||
|
local,
|
||
|
always_attend_to_first_position,
|
||
|
first_position_attends_to_all,
|
||
|
attend_from_chunk_width,
|
||
|
attend_from_chunk_stride,
|
||
|
attend_to_chunk_width,
|
||
|
attend_to_chunk_stride,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = CanineAttention(
|
||
|
config,
|
||
|
local,
|
||
|
always_attend_to_first_position,
|
||
|
first_position_attends_to_all,
|
||
|
attend_from_chunk_width,
|
||
|
attend_from_chunk_stride,
|
||
|
attend_to_chunk_width,
|
||
|
attend_to_chunk_stride,
|
||
|
)
|
||
|
self.intermediate = CanineIntermediate(config)
|
||
|
self.output = CanineOutput(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: Tuple[torch.FloatTensor],
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
layer_output = apply_chunking_to_forward(
|
||
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||
|
)
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
def feed_forward_chunk(self, attention_output):
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
return layer_output
|
||
|
|
||
|
|
||
|
class CanineEncoder(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config,
|
||
|
local=False,
|
||
|
always_attend_to_first_position=False,
|
||
|
first_position_attends_to_all=False,
|
||
|
attend_from_chunk_width=128,
|
||
|
attend_from_chunk_stride=128,
|
||
|
attend_to_chunk_width=128,
|
||
|
attend_to_chunk_stride=128,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList(
|
||
|
[
|
||
|
CanineLayer(
|
||
|
config,
|
||
|
local,
|
||
|
always_attend_to_first_position,
|
||
|
first_position_attends_to_all,
|
||
|
attend_from_chunk_width,
|
||
|
attend_from_chunk_stride,
|
||
|
attend_to_chunk_width,
|
||
|
attend_to_chunk_stride,
|
||
|
)
|
||
|
for _ in range(config.num_hidden_layers)
|
||
|
]
|
||
|
)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: Tuple[torch.FloatTensor],
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
output_hidden_states: Optional[bool] = False,
|
||
|
return_dict: Optional[bool] = True,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CaninePooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
class CaninePredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CanineLMPredictionHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.transform = CaninePredictionHeadTransform(config)
|
||
|
|
||
|
# The output weights are the same as the input embeddings, but there is
|
||
|
# an output-only bias for each token.
|
||
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||
|
|
||
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||
|
self.decoder.bias = self.bias
|
||
|
|
||
|
def forward(self, hidden_states: Tuple[torch.FloatTensor]) -> torch.FloatTensor:
|
||
|
hidden_states = self.transform(hidden_states)
|
||
|
hidden_states = self.decoder(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class CanineOnlyMLMHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.predictions = CanineLMPredictionHead(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
sequence_output: Tuple[torch.Tensor],
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
prediction_scores = self.predictions(sequence_output)
|
||
|
return prediction_scores
|
||
|
|
||
|
|
||
|
class CaninePreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = CanineConfig
|
||
|
load_tf_weights = load_tf_weights_in_canine
|
||
|
base_model_prefix = "canine"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
CANINE_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`CanineConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
CANINE_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare CANINE Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
CANINE_START_DOCSTRING,
|
||
|
)
|
||
|
class CanineModel(CaninePreTrainedModel):
|
||
|
def __init__(self, config, add_pooling_layer=True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
shallow_config = copy.deepcopy(config)
|
||
|
shallow_config.num_hidden_layers = 1
|
||
|
|
||
|
self.char_embeddings = CanineEmbeddings(config)
|
||
|
# shallow/low-dim transformer encoder to get a initial character encoding
|
||
|
self.initial_char_encoder = CanineEncoder(
|
||
|
shallow_config,
|
||
|
local=True,
|
||
|
always_attend_to_first_position=False,
|
||
|
first_position_attends_to_all=False,
|
||
|
attend_from_chunk_width=config.local_transformer_stride,
|
||
|
attend_from_chunk_stride=config.local_transformer_stride,
|
||
|
attend_to_chunk_width=config.local_transformer_stride,
|
||
|
attend_to_chunk_stride=config.local_transformer_stride,
|
||
|
)
|
||
|
self.chars_to_molecules = CharactersToMolecules(config)
|
||
|
# deep transformer encoder
|
||
|
self.encoder = CanineEncoder(config)
|
||
|
self.projection = ConvProjection(config)
|
||
|
# shallow/low-dim transformer encoder to get a final character encoding
|
||
|
self.final_char_encoder = CanineEncoder(shallow_config)
|
||
|
|
||
|
self.pooler = CaninePooler(config) if add_pooling_layer else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
def _create_3d_attention_mask_from_input_mask(self, from_tensor, to_mask):
|
||
|
"""
|
||
|
Create 3D attention mask from a 2D tensor mask.
|
||
|
|
||
|
Args:
|
||
|
from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
|
||
|
to_mask: int32 Tensor of shape [batch_size, to_seq_length].
|
||
|
|
||
|
Returns:
|
||
|
float Tensor of shape [batch_size, from_seq_length, to_seq_length].
|
||
|
"""
|
||
|
batch_size, from_seq_length = from_tensor.shape[0], from_tensor.shape[1]
|
||
|
|
||
|
to_seq_length = to_mask.shape[1]
|
||
|
|
||
|
to_mask = torch.reshape(to_mask, (batch_size, 1, to_seq_length)).float()
|
||
|
|
||
|
# We don't assume that `from_tensor` is a mask (although it could be). We
|
||
|
# don't actually care if we attend *from* padding tokens (only *to* padding)
|
||
|
# tokens so we create a tensor of all ones.
|
||
|
broadcast_ones = torch.ones(size=(batch_size, from_seq_length, 1), dtype=torch.float32, device=to_mask.device)
|
||
|
|
||
|
# Here we broadcast along two dimensions to create the mask.
|
||
|
mask = broadcast_ones * to_mask
|
||
|
|
||
|
return mask
|
||
|
|
||
|
def _downsample_attention_mask(self, char_attention_mask: torch.Tensor, downsampling_rate: int):
|
||
|
"""Downsample 2D character attention mask to 2D molecule attention mask using MaxPool1d layer."""
|
||
|
|
||
|
# first, make char_attention_mask 3D by adding a channel dim
|
||
|
batch_size, char_seq_len = char_attention_mask.shape
|
||
|
poolable_char_mask = torch.reshape(char_attention_mask, (batch_size, 1, char_seq_len))
|
||
|
|
||
|
# next, apply MaxPool1d to get pooled_molecule_mask of shape (batch_size, 1, mol_seq_len)
|
||
|
pooled_molecule_mask = torch.nn.MaxPool1d(kernel_size=downsampling_rate, stride=downsampling_rate)(
|
||
|
poolable_char_mask.float()
|
||
|
)
|
||
|
|
||
|
# finally, squeeze to get tensor of shape (batch_size, mol_seq_len)
|
||
|
molecule_attention_mask = torch.squeeze(pooled_molecule_mask, dim=-1)
|
||
|
|
||
|
return molecule_attention_mask
|
||
|
|
||
|
def _repeat_molecules(self, molecules: torch.Tensor, char_seq_length: torch.Tensor) -> torch.Tensor:
|
||
|
"""Repeats molecules to make them the same length as the char sequence."""
|
||
|
|
||
|
rate = self.config.downsampling_rate
|
||
|
|
||
|
molecules_without_extra_cls = molecules[:, 1:, :]
|
||
|
# `repeated`: [batch_size, almost_char_seq_len, molecule_hidden_size]
|
||
|
repeated = torch.repeat_interleave(molecules_without_extra_cls, repeats=rate, dim=-2)
|
||
|
|
||
|
# So far, we've repeated the elements sufficient for any `char_seq_length`
|
||
|
# that's a multiple of `downsampling_rate`. Now we account for the last
|
||
|
# n elements (n < `downsampling_rate`), i.e. the remainder of floor
|
||
|
# division. We do this by repeating the last molecule a few extra times.
|
||
|
last_molecule = molecules[:, -1:, :]
|
||
|
remainder_length = torch.fmod(torch.tensor(char_seq_length), torch.tensor(rate)).item()
|
||
|
remainder_repeated = torch.repeat_interleave(
|
||
|
last_molecule,
|
||
|
# +1 molecule to compensate for truncation.
|
||
|
repeats=remainder_length + rate,
|
||
|
dim=-2,
|
||
|
)
|
||
|
|
||
|
# `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
|
||
|
return torch.cat([repeated, remainder_repeated], dim=-2)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=CanineModelOutputWithPooling,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, CanineModelOutputWithPooling]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
batch_size, seq_length = input_shape
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(((batch_size, seq_length)), device=device)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
||
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||
|
molecule_attention_mask = self._downsample_attention_mask(
|
||
|
attention_mask, downsampling_rate=self.config.downsampling_rate
|
||
|
)
|
||
|
extended_molecule_attention_mask: torch.Tensor = self.get_extended_attention_mask(
|
||
|
molecule_attention_mask, (batch_size, molecule_attention_mask.shape[-1])
|
||
|
)
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
# `input_char_embeddings`: shape (batch_size, char_seq, char_dim)
|
||
|
input_char_embeddings = self.char_embeddings(
|
||
|
input_ids=input_ids,
|
||
|
position_ids=position_ids,
|
||
|
token_type_ids=token_type_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
)
|
||
|
|
||
|
# Contextualize character embeddings using shallow Transformer.
|
||
|
# We use a 3D attention mask for the local attention.
|
||
|
# `input_char_encoding`: shape (batch_size, char_seq_len, char_dim)
|
||
|
char_attention_mask = self._create_3d_attention_mask_from_input_mask(
|
||
|
input_ids if input_ids is not None else inputs_embeds, attention_mask
|
||
|
)
|
||
|
init_chars_encoder_outputs = self.initial_char_encoder(
|
||
|
input_char_embeddings,
|
||
|
attention_mask=char_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
)
|
||
|
input_char_encoding = init_chars_encoder_outputs.last_hidden_state
|
||
|
|
||
|
# Downsample chars to molecules.
|
||
|
# The following lines have dimensions: [batch, molecule_seq, molecule_dim].
|
||
|
# In this transformation, we change the dimensionality from `char_dim` to
|
||
|
# `molecule_dim`, but do *NOT* add a resnet connection. Instead, we rely on
|
||
|
# the resnet connections (a) from the final char transformer stack back into
|
||
|
# the original char transformer stack and (b) the resnet connections from
|
||
|
# the final char transformer stack back into the deep BERT stack of
|
||
|
# molecules.
|
||
|
#
|
||
|
# Empirically, it is critical to use a powerful enough transformation here:
|
||
|
# mean pooling causes training to diverge with huge gradient norms in this
|
||
|
# region of the model; using a convolution here resolves this issue. From
|
||
|
# this, it seems that molecules and characters require a very different
|
||
|
# feature space; intuitively, this makes sense.
|
||
|
init_molecule_encoding = self.chars_to_molecules(input_char_encoding)
|
||
|
|
||
|
# Deep BERT encoder
|
||
|
# `molecule_sequence_output`: shape (batch_size, mol_seq_len, mol_dim)
|
||
|
encoder_outputs = self.encoder(
|
||
|
init_molecule_encoding,
|
||
|
attention_mask=extended_molecule_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
molecule_sequence_output = encoder_outputs[0]
|
||
|
pooled_output = self.pooler(molecule_sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
# Upsample molecules back to characters.
|
||
|
# `repeated_molecules`: shape (batch_size, char_seq_len, mol_hidden_size)
|
||
|
repeated_molecules = self._repeat_molecules(molecule_sequence_output, char_seq_length=input_shape[-1])
|
||
|
|
||
|
# Concatenate representations (contextualized char embeddings and repeated molecules):
|
||
|
# `concat`: shape [batch_size, char_seq_len, molecule_hidden_size+char_hidden_final]
|
||
|
concat = torch.cat([input_char_encoding, repeated_molecules], dim=-1)
|
||
|
|
||
|
# Project representation dimension back to hidden_size
|
||
|
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
|
||
|
sequence_output = self.projection(concat)
|
||
|
|
||
|
# Apply final shallow Transformer
|
||
|
# `sequence_output`: shape (batch_size, char_seq_len, hidden_size])
|
||
|
final_chars_encoder_outputs = self.final_char_encoder(
|
||
|
sequence_output,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
)
|
||
|
sequence_output = final_chars_encoder_outputs.last_hidden_state
|
||
|
|
||
|
if output_hidden_states:
|
||
|
deep_encoder_hidden_states = encoder_outputs.hidden_states if return_dict else encoder_outputs[1]
|
||
|
all_hidden_states = (
|
||
|
all_hidden_states
|
||
|
+ init_chars_encoder_outputs.hidden_states
|
||
|
+ deep_encoder_hidden_states
|
||
|
+ final_chars_encoder_outputs.hidden_states
|
||
|
)
|
||
|
|
||
|
if output_attentions:
|
||
|
deep_encoder_self_attentions = encoder_outputs.attentions if return_dict else encoder_outputs[-1]
|
||
|
all_self_attentions = (
|
||
|
all_self_attentions
|
||
|
+ init_chars_encoder_outputs.attentions
|
||
|
+ deep_encoder_self_attentions
|
||
|
+ final_chars_encoder_outputs.attentions
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (sequence_output, pooled_output)
|
||
|
output += tuple(v for v in [all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return output
|
||
|
|
||
|
return CanineModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
CANINE Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
||
|
output) e.g. for GLUE tasks.
|
||
|
""",
|
||
|
CANINE_START_DOCSTRING,
|
||
|
)
|
||
|
class CanineForSequenceClassification(CaninePreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.canine = CanineModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=SequenceClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.canine(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
logits = self.classifier(pooled_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
CANINE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
||
|
softmax) e.g. for RocStories/SWAG tasks.
|
||
|
""",
|
||
|
CANINE_START_DOCSTRING,
|
||
|
)
|
||
|
class CanineForMultipleChoice(CaninePreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.canine = CanineModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, 1)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MultipleChoiceModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
||
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
||
|
`input_ids` above)
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
||
|
|
||
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
||
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
||
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
||
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
||
|
inputs_embeds = (
|
||
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
||
|
if inputs_embeds is not None
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
outputs = self.canine(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
logits = self.classifier(pooled_output)
|
||
|
reshaped_logits = logits.view(-1, num_choices)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(reshaped_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (reshaped_logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return MultipleChoiceModelOutput(
|
||
|
loss=loss,
|
||
|
logits=reshaped_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
CANINE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
||
|
Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
CANINE_START_DOCSTRING,
|
||
|
)
|
||
|
class CanineForTokenClassification(CaninePreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.canine = CanineModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, CanineForTokenClassification
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/canine-s")
|
||
|
>>> model = CanineForTokenClassification.from_pretrained("google/canine-s")
|
||
|
|
||
|
>>> inputs = tokenizer(
|
||
|
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
|
||
|
... )
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... logits = model(**inputs).logits
|
||
|
|
||
|
>>> predicted_token_class_ids = logits.argmax(-1)
|
||
|
|
||
|
>>> # Note that tokens are classified rather then input words which means that
|
||
|
>>> # there might be more predicted token classes than words.
|
||
|
>>> # Multiple token classes might account for the same word
|
||
|
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
|
||
|
>>> predicted_tokens_classes # doctest: +SKIP
|
||
|
```
|
||
|
|
||
|
```python
|
||
|
>>> labels = predicted_token_class_ids
|
||
|
>>> loss = model(**inputs, labels=labels).loss
|
||
|
>>> round(loss.item(), 2) # doctest: +SKIP
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.canine(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
sequence_output = self.dropout(sequence_output)
|
||
|
logits = self.classifier(sequence_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
CANINE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
||
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
CANINE_START_DOCSTRING,
|
||
|
)
|
||
|
class CanineForQuestionAnswering(CaninePreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.canine = CanineModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint="Splend1dchan/canine-c-squad",
|
||
|
output_type=QuestionAnsweringModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
expected_output="'nice puppet'",
|
||
|
expected_loss=8.81,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
end_positions: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.canine(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(sequence_output)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1)
|
||
|
end_logits = end_logits.squeeze(-1)
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeeze(-1)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions.clamp_(0, ignored_index)
|
||
|
end_positions.clamp_(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + outputs[2:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|