160 lines
7.2 KiB
Python
160 lines
7.2 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 Cohere team. All rights reserved.
|
||
|
#
|
||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||
|
# and OPT implementations in this library. It has been modified from its
|
||
|
# original forms to accommodate minor architectural differences compared
|
||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Cohere model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
COHERE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||
|
|
||
|
|
||
|
class CohereConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`CohereModel`]. It is used to instantiate an Cohere
|
||
|
model according to the specified arguments, defining the model architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information. Instantiating a configuration
|
||
|
with the defaults will yield a similar configuration to that of the [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) model.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 256000):
|
||
|
Vocabulary size of the Cohere model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`CohereModel`]
|
||
|
hidden_size (`int`, *optional*, defaults to 8192):
|
||
|
Dimension of the hidden representations.
|
||
|
intermediate_size (`int`, *optional*, defaults to 22528):
|
||
|
Dimension of the MLP representations.
|
||
|
logit_scale (`float`, *optional*, defaults to 0.0625):
|
||
|
The scaling factor for the output logits.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 40):
|
||
|
Number of hidden layers in the Transformer decoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 64):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
num_key_value_heads (`int`, *optional*):
|
||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||
|
`num_attention_heads`.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the decoder.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
||
|
The maximum sequence length that this model might ever be used with.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
||
|
The epsilon used by the layer normalization.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
Padding token id.
|
||
|
bos_token_id (`int`, *optional*, defaults to 5):
|
||
|
Beginning of stream token id.
|
||
|
eos_token_id (`int`, *optional*, defaults to 255001):
|
||
|
End of stream token id.
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to tie weight embeddings
|
||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||
|
The base period of the RoPE embeddings.
|
||
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
use_qk_norm (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use query-key normalization in the attention
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import CohereModel, CohereConfig
|
||
|
|
||
|
>>> # Initializing a Cohere model configuration
|
||
|
>>> configuration = CohereConfig()
|
||
|
|
||
|
>>> # Initializing a model from the Cohere configuration
|
||
|
>>> model = CohereModel(configuration) # doctest: +SKIP
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config # doctest: +SKIP
|
||
|
```"""
|
||
|
|
||
|
model_type = "cohere"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=256000,
|
||
|
hidden_size=8192,
|
||
|
intermediate_size=22528,
|
||
|
logit_scale=0.0625,
|
||
|
num_hidden_layers=40,
|
||
|
num_attention_heads=64,
|
||
|
num_key_value_heads=None,
|
||
|
hidden_act="silu",
|
||
|
max_position_embeddings=8192,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-5,
|
||
|
use_cache=True,
|
||
|
pad_token_id=0,
|
||
|
bos_token_id=5,
|
||
|
eos_token_id=255001,
|
||
|
tie_word_embeddings=True,
|
||
|
rope_theta=10000.0,
|
||
|
attention_bias=False,
|
||
|
attention_dropout=0.0,
|
||
|
use_qk_norm=False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.hidden_size = hidden_size
|
||
|
self.logit_scale = logit_scale
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
|
||
|
# for backward compatibility
|
||
|
if num_key_value_heads is None:
|
||
|
num_key_value_heads = num_attention_heads
|
||
|
|
||
|
self.num_key_value_heads = num_key_value_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.use_cache = use_cache
|
||
|
self.rope_theta = rope_theta
|
||
|
self.attention_bias = attention_bias
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.use_qk_norm = use_qk_norm
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
**kwargs,
|
||
|
)
|