267 lines
9.5 KiB
Python
267 lines
9.5 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization classes for CPMAnt."""
|
||
|
import collections
|
||
|
import os
|
||
|
from typing import List, Optional, Tuple
|
||
|
|
||
|
from transformers.utils import is_jieba_available, requires_backends
|
||
|
|
||
|
|
||
|
if is_jieba_available():
|
||
|
import jieba
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
||
|
|
||
|
|
||
|
def load_vocab(vocab_file):
|
||
|
"""Loads a vocabulary file into a dictionary."""
|
||
|
vocab = collections.OrderedDict()
|
||
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
||
|
tokens = reader.readlines()
|
||
|
for index, token in enumerate(tokens):
|
||
|
token = token.rstrip("\n")
|
||
|
vocab[token] = index
|
||
|
return vocab
|
||
|
|
||
|
|
||
|
class WordpieceTokenizer(object):
|
||
|
def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200):
|
||
|
self.vocab = vocab
|
||
|
self.unk_token = unk_token
|
||
|
self.max_input_chars_per_word = max_input_chars_per_word
|
||
|
|
||
|
def tokenize(self, token):
|
||
|
chars = list(token)
|
||
|
if len(chars) > self.max_input_chars_per_word:
|
||
|
return [self.unk_token]
|
||
|
|
||
|
start = 0
|
||
|
sub_tokens = []
|
||
|
while start < len(chars):
|
||
|
end = len(chars)
|
||
|
cur_substr = None
|
||
|
while start < end:
|
||
|
substr = "".join(chars[start:end])
|
||
|
if substr in self.vocab:
|
||
|
cur_substr = substr
|
||
|
break
|
||
|
end -= 1
|
||
|
if cur_substr is None:
|
||
|
sub_tokens.append(self.unk_token)
|
||
|
start += 1
|
||
|
else:
|
||
|
sub_tokens.append(cur_substr)
|
||
|
start = end
|
||
|
|
||
|
return sub_tokens
|
||
|
|
||
|
|
||
|
class CpmAntTokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
Path to the vocabulary file.
|
||
|
bod_token (`str`, *optional*, defaults to `"<d>"`):
|
||
|
The beginning of document token.
|
||
|
eod_token (`str`, *optional*, defaults to `"</d>"`):
|
||
|
The end of document token.
|
||
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
||
|
The beginning of sequence token.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sequence token.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding.
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token.
|
||
|
line_token (`str`, *optional*, defaults to `"</n>"`):
|
||
|
The line token.
|
||
|
space_token (`str`, *optional*, defaults to `"</_>"`):
|
||
|
The space token.
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
add_prefix_space = False
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
bod_token="<d>",
|
||
|
eod_token="</d>",
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
pad_token="<pad>",
|
||
|
unk_token="<unk>",
|
||
|
line_token="</n>",
|
||
|
space_token="</_>",
|
||
|
padding_side="left",
|
||
|
**kwargs,
|
||
|
):
|
||
|
requires_backends(self, ["jieba"])
|
||
|
self.bod_token = bod_token
|
||
|
self.eod_token = eod_token
|
||
|
self.encoder = load_vocab(vocab_file)
|
||
|
self.encoder[" "] = self.encoder[space_token]
|
||
|
self.encoder["\n"] = self.encoder[line_token]
|
||
|
|
||
|
del self.encoder[space_token]
|
||
|
del self.encoder[line_token]
|
||
|
|
||
|
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
|
||
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token)
|
||
|
|
||
|
super().__init__(
|
||
|
bod_token=bod_token,
|
||
|
eod_token=eod_token,
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
pad_token=pad_token,
|
||
|
unk_token=unk_token,
|
||
|
line_token=line_token,
|
||
|
space_token=space_token,
|
||
|
padding_side=padding_side,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def bod_token_id(self):
|
||
|
return self.encoder[self.bod_token]
|
||
|
|
||
|
@property
|
||
|
def eod_token_id(self):
|
||
|
return self.encoder[self.eod_token]
|
||
|
|
||
|
@property
|
||
|
def newline_id(self):
|
||
|
return self.encoder["\n"]
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self) -> int:
|
||
|
return len(self.encoder)
|
||
|
|
||
|
def get_vocab(self):
|
||
|
return dict(self.encoder, **self.added_tokens_encoder)
|
||
|
|
||
|
def _tokenize(self, text):
|
||
|
"""Tokenize a string."""
|
||
|
output_tokens = []
|
||
|
for x in jieba.cut(text, cut_all=False):
|
||
|
output_tokens.extend(self.wordpiece_tokenizer.tokenize(x))
|
||
|
return output_tokens
|
||
|
|
||
|
def _decode(self, token_ids, **kwargs):
|
||
|
"""Decode ids into a string."""
|
||
|
token_ids = [i for i in token_ids if i >= 0]
|
||
|
token_ids = [
|
||
|
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
|
||
|
]
|
||
|
return super()._decode(token_ids, **kwargs)
|
||
|
|
||
|
def check(self, token):
|
||
|
return token in self.encoder
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
||
|
return "".join(tokens)
|
||
|
|
||
|
def _convert_token_to_id(self, token):
|
||
|
"""Converts a token (str) in an id using the vocab."""
|
||
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||
|
|
||
|
def _convert_id_to_token(self, index):
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
return self.decoder.get(index, self.unk_token)
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if os.path.isdir(save_directory):
|
||
|
vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
else:
|
||
|
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
||
|
index = 0
|
||
|
if " " in self.encoder:
|
||
|
self.encoder["</_>"] = self.encoder[" "]
|
||
|
del self.encoder[" "]
|
||
|
if "\n" in self.encoder:
|
||
|
self.encoder["</n>"] = self.encoder["\n"]
|
||
|
del self.encoder["\n"]
|
||
|
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
|
||
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
||
|
for token, token_index in self.encoder.items():
|
||
|
if index != token_index:
|
||
|
logger.warning(
|
||
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
||
|
" Please check that the vocabulary is not corrupted!"
|
||
|
)
|
||
|
index = token_index
|
||
|
writer.write(token + "\n")
|
||
|
index += 1
|
||
|
return (vocab_file,)
|
||
|
|
||
|
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]:
|
||
|
"""
|
||
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||
|
adding special tokens. A CPMAnt sequence has the following format:
|
||
|
|
||
|
- single sequence: `[BOS] Sequence`.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added.
|
||
|
token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: The model input with special tokens.
|
||
|
"""
|
||
|
if token_ids_1 is None:
|
||
|
return [self.bos_token_id] + token_ids_0
|
||
|
return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||
|
special tokens using the tokenizer `prepare_for_model` method.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`): List of IDs.
|
||
|
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs.
|
||
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the token list is already formatted with special tokens for the model.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||
|
"""
|
||
|
|
||
|
if already_has_special_tokens:
|
||
|
return super().get_special_tokens_mask(
|
||
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||
|
)
|
||
|
|
||
|
if token_ids_1 is not None:
|
||
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
|
||
|
return [1] + ([0] * len(token_ids_0))
|