117 lines
4.6 KiB
Python
117 lines
4.6 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 Salesforce and HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Salesforce CTRL configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class CTRLConfig(PretrainedConfig):
|
||
|
"""
|
||
|
This is the configuration class to store the configuration of a [`CTRLModel`] or a [`TFCTRLModel`]. It is used to
|
||
|
instantiate a CTRL model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the
|
||
|
[Salesforce/ctrl](https://huggingface.co/Salesforce/ctrl) architecture from SalesForce.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 246534):
|
||
|
Vocabulary size of the CTRL model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`CTRLModel`] or [`TFCTRLModel`].
|
||
|
n_positions (`int`, *optional*, defaults to 256):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
n_embd (`int`, *optional*, defaults to 1280):
|
||
|
Dimensionality of the embeddings and hidden states.
|
||
|
dff (`int`, *optional*, defaults to 8192):
|
||
|
Dimensionality of the inner dimension of the feed forward networks (FFN).
|
||
|
n_layer (`int`, *optional*, defaults to 48):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
n_head (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the embeddings.
|
||
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon to use in the layer normalization layers
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import CTRLConfig, CTRLModel
|
||
|
|
||
|
>>> # Initializing a CTRL configuration
|
||
|
>>> configuration = CTRLConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration
|
||
|
>>> model = CTRLModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "ctrl"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
attribute_map = {
|
||
|
"max_position_embeddings": "n_positions",
|
||
|
"hidden_size": "n_embd",
|
||
|
"num_attention_heads": "n_head",
|
||
|
"num_hidden_layers": "n_layer",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=246534,
|
||
|
n_positions=256,
|
||
|
n_embd=1280,
|
||
|
dff=8192,
|
||
|
n_layer=48,
|
||
|
n_head=16,
|
||
|
resid_pdrop=0.1,
|
||
|
embd_pdrop=0.1,
|
||
|
layer_norm_epsilon=1e-6,
|
||
|
initializer_range=0.02,
|
||
|
use_cache=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.n_positions = n_positions
|
||
|
self.n_embd = n_embd
|
||
|
self.n_layer = n_layer
|
||
|
self.n_head = n_head
|
||
|
self.dff = dff
|
||
|
self.resid_pdrop = resid_pdrop
|
||
|
self.embd_pdrop = embd_pdrop
|
||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||
|
self.initializer_range = initializer_range
|
||
|
|
||
|
self.use_cache = use_cache
|
||
|
|
||
|
super().__init__(**kwargs)
|