250 lines
7.9 KiB
Python
250 lines
7.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 Salesforce and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization classes for Salesforce CTRL."""
|
||
|
|
||
|
|
||
|
import json
|
||
|
import os
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
import regex as re
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {
|
||
|
"vocab_file": "vocab.json",
|
||
|
"merges_file": "merges.txt",
|
||
|
}
|
||
|
|
||
|
|
||
|
CONTROL_CODES = {
|
||
|
"Pregnancy": 168629,
|
||
|
"Christianity": 7675,
|
||
|
"Explain": 106423,
|
||
|
"Fitness": 63440,
|
||
|
"Saving": 63163,
|
||
|
"Ask": 27171,
|
||
|
"Ass": 95985,
|
||
|
"Joke": 163509,
|
||
|
"Questions": 45622,
|
||
|
"Thoughts": 49605,
|
||
|
"Retail": 52342,
|
||
|
"Feminism": 164338,
|
||
|
"Writing": 11992,
|
||
|
"Atheism": 192263,
|
||
|
"Netflix": 48616,
|
||
|
"Computing": 39639,
|
||
|
"Opinion": 43213,
|
||
|
"Alone": 44967,
|
||
|
"Funny": 58917,
|
||
|
"Gaming": 40358,
|
||
|
"Human": 4088,
|
||
|
"India": 1331,
|
||
|
"Joker": 77138,
|
||
|
"Diet": 36206,
|
||
|
"Legal": 11859,
|
||
|
"Norman": 4939,
|
||
|
"Tip": 72689,
|
||
|
"Weight": 52343,
|
||
|
"Movies": 46273,
|
||
|
"Running": 23425,
|
||
|
"Science": 2090,
|
||
|
"Horror": 37793,
|
||
|
"Confession": 60572,
|
||
|
"Finance": 12250,
|
||
|
"Politics": 16360,
|
||
|
"Scary": 191985,
|
||
|
"Support": 12654,
|
||
|
"Technologies": 32516,
|
||
|
"Teenage": 66160,
|
||
|
"Event": 32769,
|
||
|
"Learned": 67460,
|
||
|
"Notion": 182770,
|
||
|
"Wikipedia": 37583,
|
||
|
"Books": 6665,
|
||
|
"Extract": 76050,
|
||
|
"Confessions": 102701,
|
||
|
"Conspiracy": 75932,
|
||
|
"Links": 63674,
|
||
|
"Narcissus": 150425,
|
||
|
"Relationship": 54766,
|
||
|
"Relationships": 134796,
|
||
|
"Reviews": 41671,
|
||
|
"News": 4256,
|
||
|
"Translation": 26820,
|
||
|
"multilingual": 128406,
|
||
|
}
|
||
|
|
||
|
|
||
|
def get_pairs(word):
|
||
|
"""
|
||
|
Return set of symbol pairs in a word.
|
||
|
|
||
|
Word is represented as tuple of symbols (symbols being variable-length strings).
|
||
|
"""
|
||
|
pairs = set()
|
||
|
prev_char = word[0]
|
||
|
for char in word[1:]:
|
||
|
pairs.add((prev_char, char))
|
||
|
prev_char = char
|
||
|
|
||
|
pairs = set(pairs)
|
||
|
return pairs
|
||
|
|
||
|
|
||
|
class CTRLTokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Construct a CTRL tokenizer. Based on Byte-Pair-Encoding.
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
||
|
this superclass for more information regarding those methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
Path to the vocabulary file.
|
||
|
merges_file (`str`):
|
||
|
Path to the merges file.
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
control_codes = CONTROL_CODES
|
||
|
|
||
|
def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs):
|
||
|
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
||
|
self.encoder = json.load(vocab_handle)
|
||
|
self.decoder = {v: k for k, v in self.encoder.items()}
|
||
|
with open(merges_file, encoding="utf-8") as merges_handle:
|
||
|
merges = merges_handle.read().split("\n")[1:-1]
|
||
|
merges = [tuple(merge.split()) for merge in merges]
|
||
|
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||
|
self.cache = {}
|
||
|
super().__init__(unk_token=unk_token, **kwargs)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self):
|
||
|
return len(self.encoder)
|
||
|
|
||
|
def get_vocab(self):
|
||
|
return dict(self.encoder, **self.added_tokens_encoder)
|
||
|
|
||
|
def bpe(self, token):
|
||
|
if token in self.cache:
|
||
|
return self.cache[token]
|
||
|
word = tuple(token)
|
||
|
word = tuple(list(word[:-1]) + [word[-1] + "</w>"])
|
||
|
pairs = get_pairs(word)
|
||
|
|
||
|
if not pairs:
|
||
|
return token
|
||
|
|
||
|
while True:
|
||
|
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
||
|
if bigram not in self.bpe_ranks:
|
||
|
break
|
||
|
first, second = bigram
|
||
|
new_word = []
|
||
|
i = 0
|
||
|
while i < len(word):
|
||
|
try:
|
||
|
j = word.index(first, i)
|
||
|
except ValueError:
|
||
|
new_word.extend(word[i:])
|
||
|
break
|
||
|
else:
|
||
|
new_word.extend(word[i:j])
|
||
|
i = j
|
||
|
|
||
|
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||
|
new_word.append(first + second)
|
||
|
i += 2
|
||
|
else:
|
||
|
new_word.append(word[i])
|
||
|
i += 1
|
||
|
new_word = tuple(new_word)
|
||
|
word = new_word
|
||
|
if len(word) == 1:
|
||
|
break
|
||
|
else:
|
||
|
pairs = get_pairs(word)
|
||
|
word = "@@ ".join(word)
|
||
|
word = word[:-4]
|
||
|
self.cache[token] = word
|
||
|
return word
|
||
|
|
||
|
def _tokenize(self, text):
|
||
|
"""Tokenize a string."""
|
||
|
split_tokens = []
|
||
|
|
||
|
words = re.findall(r"\S+\n?", text)
|
||
|
|
||
|
for token in words:
|
||
|
split_tokens.extend(list(self.bpe(token).split(" ")))
|
||
|
return split_tokens
|
||
|
|
||
|
def _convert_token_to_id(self, token):
|
||
|
"""Converts a token (str) in an id using the vocab."""
|
||
|
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
||
|
|
||
|
def _convert_id_to_token(self, index):
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
return self.decoder.get(index, self.unk_token)
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens):
|
||
|
"""Converts a sequence of tokens (string) in a single string."""
|
||
|
out_string = " ".join(tokens).replace("@@ ", "").strip()
|
||
|
return out_string
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
merge_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
||
|
)
|
||
|
|
||
|
with open(vocab_file, "w", encoding="utf-8") as f:
|
||
|
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
||
|
|
||
|
index = 0
|
||
|
with open(merge_file, "w", encoding="utf-8") as writer:
|
||
|
writer.write("#version: 0.2\n")
|
||
|
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
||
|
if index != token_index:
|
||
|
logger.warning(
|
||
|
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
||
|
" Please check that the tokenizer is not corrupted!"
|
||
|
)
|
||
|
index = token_index
|
||
|
writer.write(" ".join(bpe_tokens) + "\n")
|
||
|
index += 1
|
||
|
|
||
|
return vocab_file, merge_file
|
||
|
|
||
|
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
|
||
|
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
|
||
|
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
|
||
|
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
|
||
|
# return ''.join(tokens_generated_so_far)
|