132 lines
6.3 KiB
Python
132 lines
6.3 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2010, DPR authors, The Hugging Face Team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" DPR model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class DPRConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.
|
||
|
|
||
|
This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
|
||
|
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
|
||
|
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
|
||
|
configuration to that of the DPRContextEncoder
|
||
|
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
|
||
|
architecture.
|
||
|
|
||
|
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids*
|
||
|
passed to the forward method of [`BertModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
Padding token id.
|
||
|
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
||
|
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
||
|
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
||
|
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
||
|
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
||
|
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
||
|
projection_dim (`int`, *optional*, defaults to 0):
|
||
|
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
|
||
|
projection is done.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import DPRConfig, DPRContextEncoder
|
||
|
|
||
|
>>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration
|
||
|
>>> configuration = DPRConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration
|
||
|
>>> model = DPRContextEncoder(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "dpr"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
pad_token_id=0,
|
||
|
position_embedding_type="absolute",
|
||
|
projection_dim: int = 0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.projection_dim = projection_dim
|
||
|
self.position_embedding_type = position_embedding_type
|