1379 lines
56 KiB
Python
1379 lines
56 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch DPT (Dense Prediction Transformers) model.
|
||
|
|
||
|
This implementation is heavily inspired by OpenMMLab's implementation, found here:
|
||
|
https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
import collections.abc
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import List, Optional, Set, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...file_utils import (
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import ModelOutput, logging
|
||
|
from ...utils.backbone_utils import load_backbone
|
||
|
from .configuration_dpt import DPTConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
# General docstring
|
||
|
_CONFIG_FOR_DOC = "DPTConfig"
|
||
|
|
||
|
# Base docstring
|
||
|
_CHECKPOINT_FOR_DOC = "Intel/dpt-large"
|
||
|
_EXPECTED_OUTPUT_SHAPE = [1, 577, 1024]
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import DPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseModelOutputWithIntermediateActivations(ModelOutput):
|
||
|
"""
|
||
|
Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful
|
||
|
in the context of Vision models.:
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Intermediate activations that can be used to compute hidden states of the model at various layers.
|
||
|
"""
|
||
|
|
||
|
last_hidden_states: torch.FloatTensor = None
|
||
|
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput):
|
||
|
"""
|
||
|
Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate
|
||
|
activations that can be used by the model at later stages.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
||
|
Last layer hidden-state of the first token of the sequence (classification token) after further processing
|
||
|
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
|
||
|
the classification token after processing through a linear layer and a tanh activation function. The linear
|
||
|
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
|
||
|
Intermediate activations that can be used to compute hidden states of the model at various layers.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
pooler_output: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
class DPTViTHybridEmbeddings(nn.Module):
|
||
|
"""
|
||
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
||
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
||
|
Transformer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config, feature_size=None):
|
||
|
super().__init__()
|
||
|
image_size, patch_size = config.image_size, config.patch_size
|
||
|
num_channels, hidden_size = config.num_channels, config.hidden_size
|
||
|
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
|
||
|
self.backbone = load_backbone(config)
|
||
|
feature_dim = self.backbone.channels[-1]
|
||
|
if len(self.backbone.channels) != 3:
|
||
|
raise ValueError(f"Expected backbone to have 3 output features, got {len(self.backbone.channels)}")
|
||
|
self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage
|
||
|
|
||
|
if feature_size is None:
|
||
|
feat_map_shape = config.backbone_featmap_shape
|
||
|
feature_size = feat_map_shape[-2:]
|
||
|
feature_dim = feat_map_shape[1]
|
||
|
else:
|
||
|
feature_size = (
|
||
|
feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size)
|
||
|
)
|
||
|
feature_dim = self.backbone.channels[-1]
|
||
|
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size[0]
|
||
|
self.num_channels = num_channels
|
||
|
|
||
|
self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1)
|
||
|
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
||
|
|
||
|
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
|
||
|
posemb_tok = posemb[:, :start_index]
|
||
|
posemb_grid = posemb[0, start_index:]
|
||
|
|
||
|
old_grid_size = int(math.sqrt(len(posemb_grid)))
|
||
|
|
||
|
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
|
||
|
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
|
||
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
|
||
|
|
||
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
||
|
|
||
|
return posemb
|
||
|
|
||
|
def forward(
|
||
|
self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False
|
||
|
) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if num_channels != self.num_channels:
|
||
|
raise ValueError(
|
||
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||
|
)
|
||
|
if not interpolate_pos_encoding:
|
||
|
if height != self.image_size[0] or width != self.image_size[1]:
|
||
|
raise ValueError(
|
||
|
f"Input image size ({height}*{width}) doesn't match model"
|
||
|
f" ({self.image_size[0]}*{self.image_size[1]})."
|
||
|
)
|
||
|
|
||
|
position_embeddings = self._resize_pos_embed(
|
||
|
self.position_embeddings, height // self.patch_size, width // self.patch_size
|
||
|
)
|
||
|
|
||
|
backbone_output = self.backbone(pixel_values)
|
||
|
|
||
|
features = backbone_output.feature_maps[-1]
|
||
|
|
||
|
# Retrieve also the intermediate activations to use them at later stages
|
||
|
output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index]
|
||
|
|
||
|
embeddings = self.projection(features).flatten(2).transpose(1, 2)
|
||
|
|
||
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
||
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
||
|
|
||
|
# add positional encoding to each token
|
||
|
embeddings = embeddings + position_embeddings
|
||
|
|
||
|
if not return_dict:
|
||
|
return (embeddings, output_hidden_states)
|
||
|
|
||
|
# Return hidden states and intermediate activations
|
||
|
return BaseModelOutputWithIntermediateActivations(
|
||
|
last_hidden_states=embeddings,
|
||
|
intermediate_activations=output_hidden_states,
|
||
|
)
|
||
|
|
||
|
|
||
|
class DPTViTEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Construct the CLS token, position and patch embeddings.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
||
|
self.patch_embeddings = DPTViTPatchEmbeddings(config)
|
||
|
num_patches = self.patch_embeddings.num_patches
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.config = config
|
||
|
|
||
|
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
|
||
|
posemb_tok = posemb[:, :start_index]
|
||
|
posemb_grid = posemb[0, start_index:]
|
||
|
|
||
|
old_grid_size = int(math.sqrt(len(posemb_grid)))
|
||
|
|
||
|
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
|
||
|
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
|
||
|
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
|
||
|
|
||
|
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
||
|
|
||
|
return posemb
|
||
|
|
||
|
def forward(self, pixel_values, return_dict=False):
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
|
||
|
# possibly interpolate position encodings to handle varying image sizes
|
||
|
patch_size = self.config.patch_size
|
||
|
position_embeddings = self._resize_pos_embed(
|
||
|
self.position_embeddings, height // patch_size, width // patch_size
|
||
|
)
|
||
|
|
||
|
embeddings = self.patch_embeddings(pixel_values)
|
||
|
|
||
|
batch_size, seq_len, _ = embeddings.size()
|
||
|
|
||
|
# add the [CLS] token to the embedded patch tokens
|
||
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
||
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
||
|
|
||
|
# add positional encoding to each token
|
||
|
embeddings = embeddings + position_embeddings
|
||
|
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (embeddings,)
|
||
|
|
||
|
return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings)
|
||
|
|
||
|
|
||
|
class DPTViTPatchEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Image to Patch Embedding.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
image_size, patch_size = config.image_size, config.patch_size
|
||
|
num_channels, hidden_size = config.num_channels, config.hidden_size
|
||
|
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
||
|
|
||
|
def forward(self, pixel_values):
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if num_channels != self.num_channels:
|
||
|
raise ValueError(
|
||
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||
|
)
|
||
|
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT
|
||
|
class DPTViTSelfAttention(nn.Module):
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
||
|
f"heads {config.num_attention_heads}."
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
|
||
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT
|
||
|
class DPTViTSelfOutput(nn.Module):
|
||
|
"""
|
||
|
The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the
|
||
|
layernorm applied before each block.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class DPTViTAttention(nn.Module):
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.attention = DPTViTSelfAttention(config)
|
||
|
self.output = DPTViTSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads
|
||
|
def prune_heads(self, heads: Set[int]) -> None:
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.attention.query = prune_linear_layer(self.attention.query, index)
|
||
|
self.attention.key = prune_linear_layer(self.attention.key, index)
|
||
|
self.attention.value = prune_linear_layer(self.attention.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
|
||
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTAttention.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
||
|
|
||
|
attention_output = self.output(self_outputs[0], hidden_states)
|
||
|
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT
|
||
|
class DPTViTIntermediate(nn.Module):
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT
|
||
|
class DPTViTOutput(nn.Module):
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states + input_tensor
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput
|
||
|
class DPTViTLayer(nn.Module):
|
||
|
"""This corresponds to the Block class in the timm implementation."""
|
||
|
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = DPTViTAttention(config)
|
||
|
self.intermediate = DPTViTIntermediate(config)
|
||
|
self.output = DPTViTOutput(config)
|
||
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
self_attention_outputs = self.attention(
|
||
|
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
# first residual connection
|
||
|
hidden_states = attention_output + hidden_states
|
||
|
|
||
|
# in ViT, layernorm is also applied after self-attention
|
||
|
layer_output = self.layernorm_after(hidden_states)
|
||
|
layer_output = self.intermediate(layer_output)
|
||
|
|
||
|
# second residual connection is done here
|
||
|
layer_output = self.output(layer_output, hidden_states)
|
||
|
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer
|
||
|
class DPTViTEncoder(nn.Module):
|
||
|
def __init__(self, config: DPTConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
layer_head_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class DPTReassembleStage(nn.Module):
|
||
|
"""
|
||
|
This class reassembles the hidden states of the backbone into image-like feature representations at various
|
||
|
resolutions.
|
||
|
|
||
|
This happens in 3 stages:
|
||
|
1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to
|
||
|
`config.readout_type`.
|
||
|
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
|
||
|
3. Resizing the spatial dimensions (height, width).
|
||
|
|
||
|
Args:
|
||
|
config (`[DPTConfig]`):
|
||
|
Model configuration class defining the model architecture.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList()
|
||
|
if config.is_hybrid:
|
||
|
self._init_reassemble_dpt_hybrid(config)
|
||
|
else:
|
||
|
self._init_reassemble_dpt(config)
|
||
|
|
||
|
self.neck_ignore_stages = config.neck_ignore_stages
|
||
|
|
||
|
def _init_reassemble_dpt_hybrid(self, config):
|
||
|
r""" "
|
||
|
For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official
|
||
|
implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438
|
||
|
for more details.
|
||
|
"""
|
||
|
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
|
||
|
if i <= 1:
|
||
|
self.layers.append(nn.Identity())
|
||
|
elif i > 1:
|
||
|
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
|
||
|
|
||
|
if config.readout_type != "project":
|
||
|
raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.")
|
||
|
|
||
|
# When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file
|
||
|
self.readout_projects = nn.ModuleList()
|
||
|
hidden_size = _get_backbone_hidden_size(config)
|
||
|
for i in range(len(config.neck_hidden_sizes)):
|
||
|
if i <= 1:
|
||
|
self.readout_projects.append(nn.Sequential(nn.Identity()))
|
||
|
elif i > 1:
|
||
|
self.readout_projects.append(
|
||
|
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
|
||
|
)
|
||
|
|
||
|
def _init_reassemble_dpt(self, config):
|
||
|
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
|
||
|
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
|
||
|
|
||
|
if config.readout_type == "project":
|
||
|
self.readout_projects = nn.ModuleList()
|
||
|
hidden_size = _get_backbone_hidden_size(config)
|
||
|
for _ in range(len(config.neck_hidden_sizes)):
|
||
|
self.readout_projects.append(
|
||
|
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`):
|
||
|
List of hidden states from the backbone.
|
||
|
"""
|
||
|
out = []
|
||
|
|
||
|
for i, hidden_state in enumerate(hidden_states):
|
||
|
if i not in self.neck_ignore_stages:
|
||
|
# reshape to (batch_size, num_channels, height, width)
|
||
|
cls_token, hidden_state = hidden_state[:, 0], hidden_state[:, 1:]
|
||
|
batch_size, sequence_length, num_channels = hidden_state.shape
|
||
|
if patch_height is not None and patch_width is not None:
|
||
|
hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels)
|
||
|
else:
|
||
|
size = int(math.sqrt(sequence_length))
|
||
|
hidden_state = hidden_state.reshape(batch_size, size, size, num_channels)
|
||
|
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
||
|
|
||
|
feature_shape = hidden_state.shape
|
||
|
if self.config.readout_type == "project":
|
||
|
# reshape to (batch_size, height*width, num_channels)
|
||
|
hidden_state = hidden_state.flatten(2).permute((0, 2, 1))
|
||
|
readout = cls_token.unsqueeze(1).expand_as(hidden_state)
|
||
|
# concatenate the readout token to the hidden states and project
|
||
|
hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1))
|
||
|
# reshape back to (batch_size, num_channels, height, width)
|
||
|
hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape)
|
||
|
elif self.config.readout_type == "add":
|
||
|
hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1)
|
||
|
hidden_state = hidden_state.reshape(feature_shape)
|
||
|
hidden_state = self.layers[i](hidden_state)
|
||
|
out.append(hidden_state)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
def _get_backbone_hidden_size(config):
|
||
|
if config.backbone_config is not None and config.is_hybrid is False:
|
||
|
return config.backbone_config.hidden_size
|
||
|
else:
|
||
|
return config.hidden_size
|
||
|
|
||
|
|
||
|
class DPTReassembleLayer(nn.Module):
|
||
|
def __init__(self, config, channels, factor):
|
||
|
super().__init__()
|
||
|
# projection
|
||
|
hidden_size = _get_backbone_hidden_size(config)
|
||
|
self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1)
|
||
|
|
||
|
# up/down sampling depending on factor
|
||
|
if factor > 1:
|
||
|
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
|
||
|
elif factor == 1:
|
||
|
self.resize = nn.Identity()
|
||
|
elif factor < 1:
|
||
|
# so should downsample
|
||
|
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1)
|
||
|
|
||
|
def forward(self, hidden_state):
|
||
|
hidden_state = self.projection(hidden_state)
|
||
|
hidden_state = self.resize(hidden_state)
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class DPTFeatureFusionStage(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.layers = nn.ModuleList()
|
||
|
for _ in range(len(config.neck_hidden_sizes)):
|
||
|
self.layers.append(DPTFeatureFusionLayer(config))
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# reversing the hidden_states, we start from the last
|
||
|
hidden_states = hidden_states[::-1]
|
||
|
|
||
|
fused_hidden_states = []
|
||
|
# first layer only uses the last hidden_state
|
||
|
fused_hidden_state = self.layers[0](hidden_states[0])
|
||
|
fused_hidden_states.append(fused_hidden_state)
|
||
|
# looping from the last layer to the second
|
||
|
for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]):
|
||
|
fused_hidden_state = layer(fused_hidden_state, hidden_state)
|
||
|
fused_hidden_states.append(fused_hidden_state)
|
||
|
|
||
|
return fused_hidden_states
|
||
|
|
||
|
|
||
|
class DPTPreActResidualLayer(nn.Module):
|
||
|
"""
|
||
|
ResidualConvUnit, pre-activate residual unit.
|
||
|
|
||
|
Args:
|
||
|
config (`[DPTConfig]`):
|
||
|
Model configuration class defining the model architecture.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.use_batch_norm = config.use_batch_norm_in_fusion_residual
|
||
|
use_bias_in_fusion_residual = (
|
||
|
config.use_bias_in_fusion_residual
|
||
|
if config.use_bias_in_fusion_residual is not None
|
||
|
else not self.use_batch_norm
|
||
|
)
|
||
|
|
||
|
self.activation1 = nn.ReLU()
|
||
|
self.convolution1 = nn.Conv2d(
|
||
|
config.fusion_hidden_size,
|
||
|
config.fusion_hidden_size,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
bias=use_bias_in_fusion_residual,
|
||
|
)
|
||
|
|
||
|
self.activation2 = nn.ReLU()
|
||
|
self.convolution2 = nn.Conv2d(
|
||
|
config.fusion_hidden_size,
|
||
|
config.fusion_hidden_size,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
bias=use_bias_in_fusion_residual,
|
||
|
)
|
||
|
|
||
|
if self.use_batch_norm:
|
||
|
self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size)
|
||
|
self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size)
|
||
|
|
||
|
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
||
|
residual = hidden_state
|
||
|
hidden_state = self.activation1(hidden_state)
|
||
|
|
||
|
hidden_state = self.convolution1(hidden_state)
|
||
|
|
||
|
if self.use_batch_norm:
|
||
|
hidden_state = self.batch_norm1(hidden_state)
|
||
|
|
||
|
hidden_state = self.activation2(hidden_state)
|
||
|
hidden_state = self.convolution2(hidden_state)
|
||
|
|
||
|
if self.use_batch_norm:
|
||
|
hidden_state = self.batch_norm2(hidden_state)
|
||
|
|
||
|
return hidden_state + residual
|
||
|
|
||
|
|
||
|
class DPTFeatureFusionLayer(nn.Module):
|
||
|
"""Feature fusion layer, merges feature maps from different stages.
|
||
|
|
||
|
Args:
|
||
|
config (`[DPTConfig]`):
|
||
|
Model configuration class defining the model architecture.
|
||
|
align_corners (`bool`, *optional*, defaults to `True`):
|
||
|
The align_corner setting for bilinear upsample.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config, align_corners=True):
|
||
|
super().__init__()
|
||
|
|
||
|
self.align_corners = align_corners
|
||
|
|
||
|
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
|
||
|
|
||
|
self.residual_layer1 = DPTPreActResidualLayer(config)
|
||
|
self.residual_layer2 = DPTPreActResidualLayer(config)
|
||
|
|
||
|
def forward(self, hidden_state, residual=None):
|
||
|
if residual is not None:
|
||
|
if hidden_state.shape != residual.shape:
|
||
|
residual = nn.functional.interpolate(
|
||
|
residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False
|
||
|
)
|
||
|
hidden_state = hidden_state + self.residual_layer1(residual)
|
||
|
|
||
|
hidden_state = self.residual_layer2(hidden_state)
|
||
|
hidden_state = nn.functional.interpolate(
|
||
|
hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
||
|
)
|
||
|
hidden_state = self.projection(hidden_state)
|
||
|
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class DPTPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = DPTConfig
|
||
|
base_model_prefix = "dpt"
|
||
|
main_input_name = "pixel_values"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
DPT_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
||
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
DPT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
|
||
|
for details.
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare DPT Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
DPT_START_DOCSTRING,
|
||
|
)
|
||
|
class DPTModel(DPTPreTrainedModel):
|
||
|
def __init__(self, config, add_pooling_layer=True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
# vit encoder
|
||
|
if config.is_hybrid:
|
||
|
self.embeddings = DPTViTHybridEmbeddings(config)
|
||
|
else:
|
||
|
self.embeddings = DPTViTEmbeddings(config)
|
||
|
self.encoder = DPTViTEncoder(config)
|
||
|
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pooler = DPTViTPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
if self.config.is_hybrid:
|
||
|
return self.embeddings
|
||
|
else:
|
||
|
return self.embeddings.patch_embeddings
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutputWithPoolingAndIntermediateActivations,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="vision",
|
||
|
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(pixel_values, return_dict=return_dict)
|
||
|
|
||
|
embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_last_hidden_states,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
sequence_output = self.layernorm(sequence_output)
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
|
||
|
return head_outputs + encoder_outputs[1:] + embedding_output[1:]
|
||
|
|
||
|
return BaseModelOutputWithPoolingAndIntermediateActivations(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
intermediate_activations=embedding_output.intermediate_activations,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT
|
||
|
class DPTViTPooler(nn.Module):
|
||
|
def __init__(self, config: DPTConfig):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
class DPTNeck(nn.Module):
|
||
|
"""
|
||
|
DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
|
||
|
input and produces another list of tensors as output. For DPT, it includes 2 stages:
|
||
|
|
||
|
* DPTReassembleStage
|
||
|
* DPTFeatureFusionStage.
|
||
|
|
||
|
Args:
|
||
|
config (dict): config dict.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
|
||
|
# postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT)
|
||
|
if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]:
|
||
|
self.reassemble_stage = None
|
||
|
else:
|
||
|
self.reassemble_stage = DPTReassembleStage(config)
|
||
|
|
||
|
self.convs = nn.ModuleList()
|
||
|
for channel in config.neck_hidden_sizes:
|
||
|
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
|
||
|
|
||
|
# fusion
|
||
|
self.fusion_stage = DPTFeatureFusionStage(config)
|
||
|
|
||
|
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
|
||
|
List of hidden states from the backbone.
|
||
|
"""
|
||
|
if not isinstance(hidden_states, (tuple, list)):
|
||
|
raise ValueError("hidden_states should be a tuple or list of tensors")
|
||
|
|
||
|
if len(hidden_states) != len(self.config.neck_hidden_sizes):
|
||
|
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
|
||
|
|
||
|
# postprocess hidden states
|
||
|
if self.reassemble_stage is not None:
|
||
|
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
|
||
|
|
||
|
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
|
||
|
|
||
|
# fusion blocks
|
||
|
output = self.fusion_stage(features)
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
class DPTDepthEstimationHead(nn.Module):
|
||
|
"""
|
||
|
Output head head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples
|
||
|
the predictions to the input resolution after the first convolutional layer (details can be found in the paper's
|
||
|
supplementary material).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
self.projection = None
|
||
|
if config.add_projection:
|
||
|
self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
||
|
|
||
|
features = config.fusion_hidden_size
|
||
|
self.head = nn.Sequential(
|
||
|
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
||
|
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
||
|
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
||
|
nn.ReLU(),
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
|
||
|
# use last features
|
||
|
hidden_states = hidden_states[self.config.head_in_index]
|
||
|
|
||
|
if self.projection is not None:
|
||
|
hidden_states = self.projection(hidden_states)
|
||
|
hidden_states = nn.ReLU()(hidden_states)
|
||
|
|
||
|
predicted_depth = self.head(hidden_states)
|
||
|
|
||
|
predicted_depth = predicted_depth.squeeze(dim=1)
|
||
|
|
||
|
return predicted_depth
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
|
||
|
""",
|
||
|
DPT_START_DOCSTRING,
|
||
|
)
|
||
|
class DPTForDepthEstimation(DPTPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.backbone = None
|
||
|
if config.backbone_config is not None and config.is_hybrid is False:
|
||
|
self.backbone = load_backbone(config)
|
||
|
else:
|
||
|
self.dpt = DPTModel(config, add_pooling_layer=False)
|
||
|
|
||
|
# Neck
|
||
|
self.neck = DPTNeck(config)
|
||
|
|
||
|
# Depth estimation head
|
||
|
self.head = DPTDepthEstimationHead(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.FloatTensor,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||
|
Ground truth depth estimation maps for computing the loss.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DPTForDepthEstimation
|
||
|
>>> import torch
|
||
|
>>> import numpy as np
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large")
|
||
|
>>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
||
|
|
||
|
>>> # prepare image for the model
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(**inputs)
|
||
|
... predicted_depth = outputs.predicted_depth
|
||
|
|
||
|
>>> # interpolate to original size
|
||
|
>>> prediction = torch.nn.functional.interpolate(
|
||
|
... predicted_depth.unsqueeze(1),
|
||
|
... size=image.size[::-1],
|
||
|
... mode="bicubic",
|
||
|
... align_corners=False,
|
||
|
... )
|
||
|
|
||
|
>>> # visualize the prediction
|
||
|
>>> output = prediction.squeeze().cpu().numpy()
|
||
|
>>> formatted = (output * 255 / np.max(output)).astype("uint8")
|
||
|
>>> depth = Image.fromarray(formatted)
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
|
||
|
if self.backbone is not None:
|
||
|
outputs = self.backbone.forward_with_filtered_kwargs(
|
||
|
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = outputs.feature_maps
|
||
|
else:
|
||
|
outputs = self.dpt(
|
||
|
pixel_values,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=True, # we need the intermediate hidden states
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
||
|
# only keep certain features based on config.backbone_out_indices
|
||
|
# note that the hidden_states also include the initial embeddings
|
||
|
if not self.config.is_hybrid:
|
||
|
hidden_states = [
|
||
|
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
|
||
|
]
|
||
|
else:
|
||
|
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
|
||
|
backbone_hidden_states.extend(
|
||
|
feature
|
||
|
for idx, feature in enumerate(hidden_states[1:])
|
||
|
if idx in self.config.backbone_out_indices[2:]
|
||
|
)
|
||
|
|
||
|
hidden_states = backbone_hidden_states
|
||
|
|
||
|
patch_height, patch_width = None, None
|
||
|
if self.config.backbone_config is not None and self.config.is_hybrid is False:
|
||
|
_, _, height, width = pixel_values.shape
|
||
|
patch_size = self.config.backbone_config.patch_size
|
||
|
patch_height = height // patch_size
|
||
|
patch_width = width // patch_size
|
||
|
|
||
|
hidden_states = self.neck(hidden_states, patch_height, patch_width)
|
||
|
|
||
|
predicted_depth = self.head(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
raise NotImplementedError("Training is not implemented yet")
|
||
|
|
||
|
if not return_dict:
|
||
|
if output_hidden_states:
|
||
|
output = (predicted_depth,) + outputs[1:]
|
||
|
else:
|
||
|
output = (predicted_depth,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return DepthEstimatorOutput(
|
||
|
loss=loss,
|
||
|
predicted_depth=predicted_depth,
|
||
|
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class DPTSemanticSegmentationHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
features = config.fusion_hidden_size
|
||
|
self.head = nn.Sequential(
|
||
|
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(features),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(config.semantic_classifier_dropout),
|
||
|
nn.Conv2d(features, config.num_labels, kernel_size=1),
|
||
|
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
|
||
|
# use last features
|
||
|
hidden_states = hidden_states[self.config.head_in_index]
|
||
|
|
||
|
logits = self.head(hidden_states)
|
||
|
|
||
|
return logits
|
||
|
|
||
|
|
||
|
class DPTAuxiliaryHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
features = config.fusion_hidden_size
|
||
|
self.head = nn.Sequential(
|
||
|
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
|
||
|
nn.BatchNorm2d(features),
|
||
|
nn.ReLU(),
|
||
|
nn.Dropout(0.1, False),
|
||
|
nn.Conv2d(features, config.num_labels, kernel_size=1),
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
logits = self.head(hidden_states)
|
||
|
|
||
|
return logits
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
|
||
|
""",
|
||
|
DPT_START_DOCSTRING,
|
||
|
)
|
||
|
class DPTForSemanticSegmentation(DPTPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.dpt = DPTModel(config, add_pooling_layer=False)
|
||
|
|
||
|
# Neck
|
||
|
self.neck = DPTNeck(config)
|
||
|
|
||
|
# Segmentation head(s)
|
||
|
self.head = DPTSemanticSegmentationHead(config)
|
||
|
self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
|
||
|
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade")
|
||
|
>>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade")
|
||
|
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> logits = outputs.logits
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
|
||
|
outputs = self.dpt(
|
||
|
pixel_values,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=True, # we need the intermediate hidden states
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
||
|
|
||
|
# only keep certain features based on config.backbone_out_indices
|
||
|
# note that the hidden_states also include the initial embeddings
|
||
|
if not self.config.is_hybrid:
|
||
|
hidden_states = [
|
||
|
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
|
||
|
]
|
||
|
else:
|
||
|
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
|
||
|
backbone_hidden_states.extend(
|
||
|
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:]
|
||
|
)
|
||
|
|
||
|
hidden_states = backbone_hidden_states
|
||
|
|
||
|
hidden_states = self.neck(hidden_states=hidden_states)
|
||
|
|
||
|
logits = self.head(hidden_states)
|
||
|
|
||
|
auxiliary_logits = None
|
||
|
if self.auxiliary_head is not None:
|
||
|
auxiliary_logits = self.auxiliary_head(hidden_states[-1])
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.num_labels == 1:
|
||
|
raise ValueError("The number of labels should be greater than one")
|
||
|
else:
|
||
|
# upsample logits to the images' original size
|
||
|
upsampled_logits = nn.functional.interpolate(
|
||
|
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
||
|
)
|
||
|
if auxiliary_logits is not None:
|
||
|
upsampled_auxiliary_logits = nn.functional.interpolate(
|
||
|
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
|
||
|
)
|
||
|
# compute weighted loss
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
|
||
|
main_loss = loss_fct(upsampled_logits, labels)
|
||
|
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
|
||
|
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
|
||
|
|
||
|
if not return_dict:
|
||
|
if output_hidden_states:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
else:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SemanticSegmenterOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|