1303 lines
56 KiB
Python
1303 lines
56 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch Flaubert model, based on XLM."""
|
||
|
|
||
|
import itertools
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Dict, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import gelu
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
MaskedLMOutput,
|
||
|
MultipleChoiceModelOutput,
|
||
|
QuestionAnsweringModelOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
TokenClassifierOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
|
||
|
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_flaubert import FlaubertConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
|
||
|
_CONFIG_FOR_DOC = "FlaubertConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
|
||
|
def create_sinusoidal_embeddings(n_pos, dim, out):
|
||
|
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
||
|
out.requires_grad = False
|
||
|
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
||
|
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
||
|
out.detach_()
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.get_masks
|
||
|
def get_masks(slen, lengths, causal, padding_mask=None):
|
||
|
"""
|
||
|
Generate hidden states mask, and optionally an attention mask.
|
||
|
"""
|
||
|
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
|
||
|
if padding_mask is not None:
|
||
|
mask = padding_mask
|
||
|
else:
|
||
|
assert lengths.max().item() <= slen
|
||
|
mask = alen < lengths[:, None]
|
||
|
|
||
|
# attention mask is the same as mask, or triangular inferior attention (causal)
|
||
|
bs = lengths.size(0)
|
||
|
if causal:
|
||
|
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
|
||
|
else:
|
||
|
attn_mask = mask
|
||
|
|
||
|
# sanity check
|
||
|
assert mask.size() == (bs, slen)
|
||
|
assert causal is False or attn_mask.size() == (bs, slen, slen)
|
||
|
|
||
|
return mask, attn_mask
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention
|
||
|
class MultiHeadAttention(nn.Module):
|
||
|
NEW_ID = itertools.count()
|
||
|
|
||
|
def __init__(self, n_heads, dim, config):
|
||
|
super().__init__()
|
||
|
self.layer_id = next(MultiHeadAttention.NEW_ID)
|
||
|
self.dim = dim
|
||
|
self.n_heads = n_heads
|
||
|
self.dropout = config.attention_dropout
|
||
|
assert self.dim % self.n_heads == 0
|
||
|
|
||
|
self.q_lin = nn.Linear(dim, dim)
|
||
|
self.k_lin = nn.Linear(dim, dim)
|
||
|
self.v_lin = nn.Linear(dim, dim)
|
||
|
self.out_lin = nn.Linear(dim, dim)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads):
|
||
|
attention_head_size = self.dim // self.n_heads
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
|
||
|
# Prune linear layers
|
||
|
self.q_lin = prune_linear_layer(self.q_lin, index)
|
||
|
self.k_lin = prune_linear_layer(self.k_lin, index)
|
||
|
self.v_lin = prune_linear_layer(self.v_lin, index)
|
||
|
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
||
|
# Update hyper params
|
||
|
self.n_heads = self.n_heads - len(heads)
|
||
|
self.dim = attention_head_size * self.n_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
|
||
|
"""
|
||
|
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
||
|
"""
|
||
|
# Input is (bs, qlen, dim)
|
||
|
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
||
|
bs, qlen, dim = input.size()
|
||
|
if kv is None:
|
||
|
klen = qlen if cache is None else cache["slen"] + qlen
|
||
|
else:
|
||
|
klen = kv.size(1)
|
||
|
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
||
|
n_heads = self.n_heads
|
||
|
dim_per_head = self.dim // n_heads
|
||
|
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
|
||
|
|
||
|
def shape(x):
|
||
|
"""projection"""
|
||
|
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
||
|
|
||
|
def unshape(x):
|
||
|
"""compute context"""
|
||
|
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
||
|
|
||
|
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
||
|
if kv is None:
|
||
|
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
||
|
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
||
|
elif cache is None or self.layer_id not in cache:
|
||
|
k = v = kv
|
||
|
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
||
|
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
||
|
|
||
|
if cache is not None:
|
||
|
if self.layer_id in cache:
|
||
|
if kv is None:
|
||
|
k_, v_ = cache[self.layer_id]
|
||
|
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
|
||
|
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
|
||
|
else:
|
||
|
k, v = cache[self.layer_id]
|
||
|
cache[self.layer_id] = (k, v)
|
||
|
|
||
|
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
|
||
|
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
|
||
|
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
|
||
|
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
|
||
|
|
||
|
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
|
||
|
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
weights = weights * head_mask
|
||
|
|
||
|
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
||
|
context = unshape(context) # (bs, qlen, dim)
|
||
|
|
||
|
outputs = (self.out_lin(context),)
|
||
|
if output_attentions:
|
||
|
outputs = outputs + (weights,)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.TransformerFFN
|
||
|
class TransformerFFN(nn.Module):
|
||
|
def __init__(self, in_dim, dim_hidden, out_dim, config):
|
||
|
super().__init__()
|
||
|
self.dropout = config.dropout
|
||
|
self.lin1 = nn.Linear(in_dim, dim_hidden)
|
||
|
self.lin2 = nn.Linear(dim_hidden, out_dim)
|
||
|
self.act = gelu if config.gelu_activation else nn.functional.relu
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
|
||
|
def forward(self, input):
|
||
|
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
|
||
|
|
||
|
def ff_chunk(self, input):
|
||
|
x = self.lin1(input)
|
||
|
x = self.act(x)
|
||
|
x = self.lin2(x)
|
||
|
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
||
|
return x
|
||
|
|
||
|
|
||
|
FLAUBERT_START_DOCSTRING = r"""
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
FLAUBERT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 0 corresponds to a *sentence A* token,
|
||
|
- 1 corresponds to a *sentence B* token.
|
||
|
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
|
||
|
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
|
||
|
`[0, ..., input_ids.size(-1)]`:
|
||
|
cache (`Dict[str, torch.FloatTensor]`, *optional*):
|
||
|
Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the
|
||
|
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
|
||
|
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
|
||
|
hidden-states.
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert
|
||
|
class FlaubertPredLayer(nn.Module):
|
||
|
"""
|
||
|
Prediction layer (cross_entropy or adaptive_softmax).
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.asm = config.asm
|
||
|
self.n_words = config.n_words
|
||
|
self.pad_index = config.pad_index
|
||
|
dim = config.emb_dim
|
||
|
|
||
|
if config.asm is False:
|
||
|
self.proj = nn.Linear(dim, config.n_words, bias=True)
|
||
|
else:
|
||
|
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
||
|
in_features=dim,
|
||
|
n_classes=config.n_words,
|
||
|
cutoffs=config.asm_cutoffs,
|
||
|
div_value=config.asm_div_value,
|
||
|
head_bias=True, # default is False
|
||
|
)
|
||
|
|
||
|
def forward(self, x, y=None):
|
||
|
"""Compute the loss, and optionally the scores."""
|
||
|
outputs = ()
|
||
|
if self.asm is False:
|
||
|
scores = self.proj(x)
|
||
|
outputs = (scores,) + outputs
|
||
|
if y is not None:
|
||
|
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
|
||
|
outputs = (loss,) + outputs
|
||
|
else:
|
||
|
scores = self.proj.log_prob(x)
|
||
|
outputs = (scores,) + outputs
|
||
|
if y is not None:
|
||
|
_, loss = self.proj(x, y)
|
||
|
outputs = (loss,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert
|
||
|
class FlaubertPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = FlaubertConfig
|
||
|
load_tf_weights = None
|
||
|
base_model_prefix = "transformer"
|
||
|
|
||
|
def __init__(self, *inputs, **kwargs):
|
||
|
super().__init__(*inputs, **kwargs)
|
||
|
|
||
|
@property
|
||
|
def dummy_inputs(self):
|
||
|
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
|
||
|
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
||
|
if self.config.use_lang_emb and self.config.n_langs > 1:
|
||
|
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
||
|
else:
|
||
|
langs_list = None
|
||
|
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights."""
|
||
|
if isinstance(module, nn.Embedding):
|
||
|
if self.config is not None and self.config.embed_init_std is not None:
|
||
|
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
if isinstance(module, nn.Linear):
|
||
|
if self.config is not None and self.config.init_std is not None:
|
||
|
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
|
||
|
if module.bias is not None:
|
||
|
nn.init.constant_(module.bias, 0.0)
|
||
|
if isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings:
|
||
|
create_sinusoidal_embeddings(
|
||
|
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
|
||
|
)
|
||
|
|
||
|
|
||
|
class FlaubertModel(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config): # , dico, is_encoder, with_output):
|
||
|
super().__init__(config)
|
||
|
|
||
|
# encoder / decoder, output layer
|
||
|
self.is_encoder = config.is_encoder
|
||
|
self.is_decoder = not config.is_encoder
|
||
|
if self.is_decoder:
|
||
|
raise NotImplementedError("Currently Flaubert can only be used as an encoder")
|
||
|
# self.with_output = with_output
|
||
|
self.causal = config.causal
|
||
|
|
||
|
# dictionary / languages
|
||
|
self.n_langs = config.n_langs
|
||
|
self.use_lang_emb = config.use_lang_emb
|
||
|
self.n_words = config.n_words
|
||
|
self.eos_index = config.eos_index
|
||
|
self.pad_index = config.pad_index
|
||
|
# self.dico = dico
|
||
|
# self.id2lang = config.id2lang
|
||
|
# self.lang2id = config.lang2id
|
||
|
# assert len(self.dico) == self.n_words
|
||
|
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
|
||
|
|
||
|
# model parameters
|
||
|
self.dim = config.emb_dim # 512 by default
|
||
|
self.hidden_dim = self.dim * 4 # 2048 by default
|
||
|
self.n_heads = config.n_heads # 8 by default
|
||
|
self.n_layers = config.n_layers
|
||
|
self.dropout = config.dropout
|
||
|
self.attention_dropout = config.attention_dropout
|
||
|
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
|
||
|
|
||
|
# embeddings
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
||
|
if config.n_langs > 1 and config.use_lang_emb:
|
||
|
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
||
|
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
||
|
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
# transformer layers
|
||
|
self.attentions = nn.ModuleList()
|
||
|
self.layer_norm1 = nn.ModuleList()
|
||
|
self.ffns = nn.ModuleList()
|
||
|
self.layer_norm2 = nn.ModuleList()
|
||
|
# if self.is_decoder:
|
||
|
# self.layer_norm15 = nn.ModuleList()
|
||
|
# self.encoder_attn = nn.ModuleList()
|
||
|
|
||
|
for _ in range(self.n_layers):
|
||
|
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
|
||
|
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
||
|
# if self.is_decoder:
|
||
|
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
||
|
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
||
|
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
|
||
|
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
||
|
|
||
|
if hasattr(config, "pruned_heads"):
|
||
|
pruned_heads = config.pruned_heads.copy().items()
|
||
|
config.pruned_heads = {}
|
||
|
for layer, heads in pruned_heads:
|
||
|
if self.attentions[int(layer)].n_heads == config.n_heads:
|
||
|
self.prune_heads({int(layer): list(map(int, heads))})
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
self.layerdrop = getattr(config, "layerdrop", 0.0)
|
||
|
self.pre_norm = getattr(config, "pre_norm", False)
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings
|
||
|
def set_input_embeddings(self, new_embeddings):
|
||
|
self.embeddings = new_embeddings
|
||
|
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.attentions[layer].prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=BaseModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
lengths: Optional[torch.LongTensor] = None,
|
||
|
cache: Optional[Dict[str, torch.FloatTensor]] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
# removed: src_enc=None, src_len=None
|
||
|
if input_ids is not None:
|
||
|
bs, slen = input_ids.size()
|
||
|
else:
|
||
|
bs, slen = inputs_embeds.size()[:-1]
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if lengths is None:
|
||
|
if input_ids is not None:
|
||
|
lengths = (input_ids != self.pad_index).sum(dim=1).long()
|
||
|
else:
|
||
|
lengths = torch.tensor([slen] * bs, device=device)
|
||
|
# mask = input_ids != self.pad_index
|
||
|
|
||
|
# check inputs
|
||
|
assert lengths.size(0) == bs
|
||
|
assert lengths.max().item() <= slen
|
||
|
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
||
|
# assert (src_enc is None) == (src_len is None)
|
||
|
# if src_enc is not None:
|
||
|
# assert self.is_decoder
|
||
|
# assert src_enc.size(0) == bs
|
||
|
|
||
|
# generate masks
|
||
|
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
||
|
# if self.is_decoder and src_enc is not None:
|
||
|
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
||
|
|
||
|
# Setting the position-ids to the registered buffer in constructor, it helps
|
||
|
# when tracing the model without passing position-ids, solves
|
||
|
# isues similar to issue #5664
|
||
|
if position_ids is None:
|
||
|
if hasattr(self, "position_ids"):
|
||
|
position_ids = self.position_ids[:, :slen]
|
||
|
position_ids = position_ids.expand((bs, slen))
|
||
|
else:
|
||
|
position_ids = torch.arange(slen, dtype=torch.long, device=device)
|
||
|
position_ids = position_ids.unsqueeze(0).expand((bs, slen))
|
||
|
else:
|
||
|
assert position_ids.size() == (bs, slen) # (slen, bs)
|
||
|
# position_ids = position_ids.transpose(0, 1)
|
||
|
|
||
|
# langs
|
||
|
if langs is not None:
|
||
|
assert langs.size() == (bs, slen) # (slen, bs)
|
||
|
# langs = langs.transpose(0, 1)
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
|
||
|
|
||
|
# do not recompute cached elements
|
||
|
if cache is not None and input_ids is not None:
|
||
|
_slen = slen - cache["slen"]
|
||
|
input_ids = input_ids[:, -_slen:]
|
||
|
position_ids = position_ids[:, -_slen:]
|
||
|
if langs is not None:
|
||
|
langs = langs[:, -_slen:]
|
||
|
mask = mask[:, -_slen:]
|
||
|
attn_mask = attn_mask[:, -_slen:]
|
||
|
|
||
|
# embeddings
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embeddings(input_ids)
|
||
|
|
||
|
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
|
||
|
if langs is not None and self.use_lang_emb and self.config.n_langs > 1:
|
||
|
tensor = tensor + self.lang_embeddings(langs)
|
||
|
if token_type_ids is not None:
|
||
|
tensor = tensor + self.embeddings(token_type_ids)
|
||
|
tensor = self.layer_norm_emb(tensor)
|
||
|
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
|
||
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
||
|
|
||
|
# transformer layers
|
||
|
hidden_states = () if output_hidden_states else None
|
||
|
attentions = () if output_attentions else None
|
||
|
for i in range(self.n_layers):
|
||
|
# LayerDrop
|
||
|
if self.training:
|
||
|
dropout_probability = torch.rand([])
|
||
|
if dropout_probability < self.layerdrop:
|
||
|
continue
|
||
|
|
||
|
if output_hidden_states:
|
||
|
hidden_states = hidden_states + (tensor,)
|
||
|
|
||
|
# self attention
|
||
|
if not self.pre_norm:
|
||
|
attn_outputs = self.attentions[i](
|
||
|
tensor,
|
||
|
attn_mask,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask[i],
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attn = attn_outputs[0]
|
||
|
if output_attentions:
|
||
|
attentions = attentions + (attn_outputs[1],)
|
||
|
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
||
|
tensor = tensor + attn
|
||
|
tensor = self.layer_norm1[i](tensor)
|
||
|
else:
|
||
|
tensor_normalized = self.layer_norm1[i](tensor)
|
||
|
attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i])
|
||
|
attn = attn_outputs[0]
|
||
|
if output_attentions:
|
||
|
attentions = attentions + (attn_outputs[1],)
|
||
|
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
||
|
tensor = tensor + attn
|
||
|
|
||
|
# encoder attention (for decoder only)
|
||
|
# if self.is_decoder and src_enc is not None:
|
||
|
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
||
|
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
||
|
# tensor = tensor + attn
|
||
|
# tensor = self.layer_norm15[i](tensor)
|
||
|
|
||
|
# FFN
|
||
|
if not self.pre_norm:
|
||
|
tensor = tensor + self.ffns[i](tensor)
|
||
|
tensor = self.layer_norm2[i](tensor)
|
||
|
else:
|
||
|
tensor_normalized = self.layer_norm2[i](tensor)
|
||
|
tensor = tensor + self.ffns[i](tensor_normalized)
|
||
|
|
||
|
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
||
|
|
||
|
# Add last hidden state
|
||
|
if output_hidden_states:
|
||
|
hidden_states = hidden_states + (tensor,)
|
||
|
|
||
|
# update cache length
|
||
|
if cache is not None:
|
||
|
cache["slen"] += tensor.size(1)
|
||
|
|
||
|
# move back sequence length to dimension 0
|
||
|
# tensor = tensor.transpose(0, 1)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
|
||
|
|
||
|
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
||
|
embeddings).
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel):
|
||
|
_tied_weights_keys = ["pred_layer.proj.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.pred_layer = FlaubertPredLayer(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.pred_layer.proj
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.pred_layer.proj = new_embeddings
|
||
|
|
||
|
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
||
|
mask_token_id = self.config.mask_token_id
|
||
|
lang_id = self.config.lang_id
|
||
|
|
||
|
effective_batch_size = input_ids.shape[0]
|
||
|
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
|
||
|
input_ids = torch.cat([input_ids, mask_token], dim=1)
|
||
|
if lang_id is not None:
|
||
|
langs = torch.full_like(input_ids, lang_id)
|
||
|
else:
|
||
|
langs = None
|
||
|
return {"input_ids": input_ids, "langs": langs}
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MaskedLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
mask="<special1>",
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MaskedLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
output = transformer_outputs[0]
|
||
|
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
|
||
|
|
||
|
if not return_dict:
|
||
|
return outputs + transformer_outputs[1:]
|
||
|
|
||
|
return MaskedLMOutput(
|
||
|
loss=outputs[0] if labels is not None else None,
|
||
|
logits=outputs[0] if labels is None else outputs[1],
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
|
||
|
e.g. for GLUE tasks.
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertForSequenceClassification(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
self.config = config
|
||
|
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.sequence_summary = SequenceSummary(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=SequenceClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
output = transformer_outputs[0]
|
||
|
logits = self.sequence_summary(output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
||
|
Named-Entity-Recognition (NER) tasks.
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertForTokenClassification(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.dropout = nn.Dropout(config.dropout)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
sequence_output = self.dropout(sequence_output)
|
||
|
logits = self.classifier(sequence_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
||
|
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=QuestionAnsweringModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
start_positions: Optional[torch.Tensor] = None,
|
||
|
end_positions: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = transformer_outputs[0]
|
||
|
|
||
|
logits = self.qa_outputs(sequence_output)
|
||
|
start_logits, end_logits = logits.split(1, dim=-1)
|
||
|
start_logits = start_logits.squeeze(-1).contiguous()
|
||
|
end_logits = end_logits.squeeze(-1).contiguous()
|
||
|
|
||
|
total_loss = None
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, split add a dimension
|
||
|
if len(start_positions.size()) > 1:
|
||
|
start_positions = start_positions.squeeze(-1)
|
||
|
if len(end_positions.size()) > 1:
|
||
|
end_positions = end_positions.squeeze(-1)
|
||
|
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||
|
ignored_index = start_logits.size(1)
|
||
|
start_positions = start_positions.clamp(0, ignored_index)
|
||
|
end_positions = end_positions.clamp(0, ignored_index)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (start_logits, end_logits) + transformer_outputs[1:]
|
||
|
return ((total_loss,) + output) if total_loss is not None else output
|
||
|
|
||
|
return QuestionAnsweringModelOutput(
|
||
|
loss=total_loss,
|
||
|
start_logits=start_logits,
|
||
|
end_logits=end_logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like
|
||
|
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
@dataclass
|
||
|
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
|
||
|
class FlaubertForQuestionAnsweringOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for outputs of question answering models using a `SquadHead`.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
|
||
|
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
|
||
|
losses.
|
||
|
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
||
|
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Indices for the top config.start_n_top start token possibilities (beam-search).
|
||
|
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
|
||
|
(beam-search).
|
||
|
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
|
||
|
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the `is_impossible` label of the answers.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
start_top_log_probs: Optional[torch.FloatTensor] = None
|
||
|
start_top_index: Optional[torch.LongTensor] = None
|
||
|
end_top_log_probs: Optional[torch.FloatTensor] = None
|
||
|
end_top_index: Optional[torch.LongTensor] = None
|
||
|
cls_logits: Optional[torch.FloatTensor] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.qa_outputs = SQuADHead(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
start_positions: Optional[torch.Tensor] = None,
|
||
|
end_positions: Optional[torch.Tensor] = None,
|
||
|
is_impossible: Optional[torch.Tensor] = None,
|
||
|
cls_index: Optional[torch.Tensor] = None,
|
||
|
p_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]:
|
||
|
r"""
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||
|
are not taken into account for computing the loss.
|
||
|
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels whether a question has an answer or no answer (SQuAD 2.0)
|
||
|
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for position (index) of the classification token to use as input for computing plausibility of the
|
||
|
answer.
|
||
|
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
|
||
|
masked. 0.0 mean token is not masked.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
|
||
|
>>> import torch
|
||
|
|
||
|
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
||
|
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
||
|
|
||
|
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
|
||
|
... 0
|
||
|
... ) # Batch size 1
|
||
|
>>> start_positions = torch.tensor([1])
|
||
|
>>> end_positions = torch.tensor([3])
|
||
|
|
||
|
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
||
|
>>> loss = outputs.loss
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
output = transformer_outputs[0]
|
||
|
|
||
|
outputs = self.qa_outputs(
|
||
|
output,
|
||
|
start_positions=start_positions,
|
||
|
end_positions=end_positions,
|
||
|
cls_index=cls_index,
|
||
|
is_impossible=is_impossible,
|
||
|
p_mask=p_mask,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return outputs + transformer_outputs[1:]
|
||
|
|
||
|
return FlaubertForQuestionAnsweringOutput(
|
||
|
loss=outputs.loss,
|
||
|
start_top_log_probs=outputs.start_top_log_probs,
|
||
|
start_top_index=outputs.start_top_index,
|
||
|
end_top_log_probs=outputs.end_top_log_probs,
|
||
|
end_top_index=outputs.end_top_index,
|
||
|
cls_logits=outputs.cls_logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
||
|
softmax) e.g. for RocStories/SWAG tasks.
|
||
|
""",
|
||
|
FLAUBERT_START_DOCSTRING,
|
||
|
)
|
||
|
# Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
||
|
class FlaubertForMultipleChoice(FlaubertPreTrainedModel):
|
||
|
def __init__(self, config, *inputs, **kwargs):
|
||
|
super().__init__(config, *inputs, **kwargs)
|
||
|
|
||
|
self.transformer = FlaubertModel(config)
|
||
|
self.sequence_summary = SequenceSummary(config)
|
||
|
self.logits_proj = nn.Linear(config.num_labels, 1)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(
|
||
|
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
||
|
)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=MultipleChoiceModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
langs: Optional[torch.Tensor] = None,
|
||
|
token_type_ids: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
lengths: Optional[torch.Tensor] = None,
|
||
|
cache: Optional[Dict[str, torch.Tensor]] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
||
|
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
||
|
`input_ids` above)
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
||
|
|
||
|
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
||
|
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
||
|
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
||
|
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
||
|
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
|
||
|
inputs_embeds = (
|
||
|
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
||
|
if inputs_embeds is not None
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
if lengths is not None:
|
||
|
logger.warning(
|
||
|
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
|
||
|
"attention mask instead."
|
||
|
)
|
||
|
lengths = None
|
||
|
|
||
|
transformer_outputs = self.transformer(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
langs=langs,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
lengths=lengths,
|
||
|
cache=cache,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
output = transformer_outputs[0]
|
||
|
logits = self.sequence_summary(output)
|
||
|
logits = self.logits_proj(logits)
|
||
|
reshaped_logits = logits.view(-1, num_choices)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(reshaped_logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (reshaped_logits,) + transformer_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return MultipleChoiceModelOutput(
|
||
|
loss=loss,
|
||
|
logits=reshaped_logits,
|
||
|
hidden_states=transformer_outputs.hidden_states,
|
||
|
attentions=transformer_outputs.attentions,
|
||
|
)
|