167 lines
7.6 KiB
Python
167 lines
7.6 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020, Hugging Face
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Funnel Transformer model configuration"""
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class FunnelConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to
|
||
|
instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture.
|
||
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel
|
||
|
Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented
|
||
|
by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`].
|
||
|
block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`):
|
||
|
The sizes of the blocks used in the model.
|
||
|
block_repeats (`List[int]`, *optional*):
|
||
|
If passed along, each layer of each block is repeated the number of times indicated.
|
||
|
num_decoder_layers (`int`, *optional*, defaults to 2):
|
||
|
The number of layers in the decoder (when not using the base model).
|
||
|
d_model (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the model's hidden states.
|
||
|
n_head (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
d_head (`int`, *optional*, defaults to 64):
|
||
|
Dimensionality of the model's heads.
|
||
|
d_inner (`int`, *optional*, defaults to 3072):
|
||
|
Inner dimension in the feed-forward blocks.
|
||
|
hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for the attention probabilities.
|
||
|
activation_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability used between the two layers of the feed-forward blocks.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.1):
|
||
|
The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers.
|
||
|
initializer_std (`float`, *optional*):
|
||
|
The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of
|
||
|
linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for
|
||
|
linear layers.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-09):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
pooling_type (`str`, *optional*, defaults to `"mean"`):
|
||
|
Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block.
|
||
|
attention_type (`str`, *optional*, defaults to `"relative_shift"`):
|
||
|
Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter
|
||
|
is faster on TPU.
|
||
|
separate_cls (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to separate the cls token when applying pooling.
|
||
|
truncate_seq (`bool`, *optional*, defaults to `True`):
|
||
|
When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a
|
||
|
sequence length that is not a multiple of 2.
|
||
|
pool_q_only (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to apply the pooling only to the query or to query, key and values for the attention layers.
|
||
|
"""
|
||
|
|
||
|
model_type = "funnel"
|
||
|
attribute_map = {
|
||
|
"hidden_size": "d_model",
|
||
|
"num_attention_heads": "n_head",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
block_sizes=[4, 4, 4],
|
||
|
block_repeats=None,
|
||
|
num_decoder_layers=2,
|
||
|
d_model=768,
|
||
|
n_head=12,
|
||
|
d_head=64,
|
||
|
d_inner=3072,
|
||
|
hidden_act="gelu_new",
|
||
|
hidden_dropout=0.1,
|
||
|
attention_dropout=0.1,
|
||
|
activation_dropout=0.0,
|
||
|
initializer_range=0.1,
|
||
|
initializer_std=None,
|
||
|
layer_norm_eps=1e-9,
|
||
|
pooling_type="mean",
|
||
|
attention_type="relative_shift",
|
||
|
separate_cls=True,
|
||
|
truncate_seq=True,
|
||
|
pool_q_only=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.block_sizes = block_sizes
|
||
|
self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats
|
||
|
assert len(block_sizes) == len(
|
||
|
self.block_repeats
|
||
|
), "`block_sizes` and `block_repeats` should have the same length."
|
||
|
self.num_decoder_layers = num_decoder_layers
|
||
|
self.d_model = d_model
|
||
|
self.n_head = n_head
|
||
|
self.d_head = d_head
|
||
|
self.d_inner = d_inner
|
||
|
self.hidden_act = hidden_act
|
||
|
self.hidden_dropout = hidden_dropout
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
self.initializer_range = initializer_range
|
||
|
self.initializer_std = initializer_std
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
assert pooling_type in [
|
||
|
"mean",
|
||
|
"max",
|
||
|
], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported."
|
||
|
self.pooling_type = pooling_type
|
||
|
assert attention_type in [
|
||
|
"relative_shift",
|
||
|
"factorized",
|
||
|
], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported."
|
||
|
self.attention_type = attention_type
|
||
|
self.separate_cls = separate_cls
|
||
|
self.truncate_seq = truncate_seq
|
||
|
self.pool_q_only = pool_q_only
|
||
|
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
@property
|
||
|
def num_hidden_layers(self):
|
||
|
return sum(self.block_sizes)
|
||
|
|
||
|
@num_hidden_layers.setter
|
||
|
def num_hidden_layers(self, value):
|
||
|
raise NotImplementedError(
|
||
|
"This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`."
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def num_blocks(self):
|
||
|
return len(self.block_sizes)
|
||
|
|
||
|
@num_blocks.setter
|
||
|
def num_blocks(self, value):
|
||
|
raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
|