1585 lines
66 KiB
Python
1585 lines
66 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch GroupViT model."""
|
||
|
|
||
|
|
||
|
import collections.abc
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
# contrastive loss function, adapted from
|
||
|
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
|
||
|
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
||
|
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit
|
||
|
def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor:
|
||
|
caption_loss = contrastive_loss(similarity)
|
||
|
image_loss = contrastive_loss(similarity.t())
|
||
|
return (caption_loss + image_loss) / 2.0
|
||
|
|
||
|
|
||
|
def hard_softmax(logits: torch.Tensor, dim: int):
|
||
|
y_soft = logits.softmax(dim)
|
||
|
# Straight through.
|
||
|
index = y_soft.max(dim, keepdim=True)[1]
|
||
|
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
||
|
ret = y_hard - y_soft.detach() + y_soft
|
||
|
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor:
|
||
|
# more stable https://github.com/pytorch/pytorch/issues/41663
|
||
|
gumbel_dist = torch.distributions.gumbel.Gumbel(
|
||
|
torch.tensor(0.0, device=logits.device, dtype=logits.dtype),
|
||
|
torch.tensor(1.0, device=logits.device, dtype=logits.dtype),
|
||
|
)
|
||
|
gumbels = gumbel_dist.sample(logits.shape)
|
||
|
|
||
|
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
|
||
|
y_soft = gumbels.softmax(dim)
|
||
|
|
||
|
if hard:
|
||
|
# Straight through.
|
||
|
index = y_soft.max(dim, keepdim=True)[1]
|
||
|
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
||
|
ret = y_hard - y_soft.detach() + y_soft
|
||
|
else:
|
||
|
# Reparametrization trick.
|
||
|
ret = y_soft
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def resize_attention_map(attentions, height, width, align_corners=False):
|
||
|
"""
|
||
|
Args:
|
||
|
attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width]
|
||
|
height (`int`): height of the output attention map
|
||
|
width (`int`): width of the output attention map
|
||
|
align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: resized attention map of shape [batch_size, groups, height, width]
|
||
|
"""
|
||
|
|
||
|
scale = (height * width // attentions.shape[2]) ** 0.5
|
||
|
if height > width:
|
||
|
feat_width = int(np.round(width / scale))
|
||
|
feat_height = attentions.shape[2] // feat_width
|
||
|
else:
|
||
|
feat_height = int(np.round(height / scale))
|
||
|
feat_width = attentions.shape[2] // feat_height
|
||
|
|
||
|
batch_size = attentions.shape[0]
|
||
|
groups = attentions.shape[1] # number of group token
|
||
|
# [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width]
|
||
|
attentions = attentions.reshape(batch_size, groups, feat_height, feat_width)
|
||
|
attentions = nn.functional.interpolate(
|
||
|
attentions, size=(height, width), mode="bilinear", align_corners=align_corners
|
||
|
)
|
||
|
return attentions
|
||
|
|
||
|
|
||
|
def get_grouping_from_attentions(attentions, hw_shape):
|
||
|
"""
|
||
|
Args:
|
||
|
attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer`
|
||
|
hw_shape (`tuple(int)`): height and width of the output attention map
|
||
|
Returns:
|
||
|
`torch.Tensor`: the attention map of shape [batch_size, groups, height, width]
|
||
|
"""
|
||
|
|
||
|
attn_maps = []
|
||
|
with torch.no_grad():
|
||
|
prev_attn_masks = None
|
||
|
for attn_masks in attentions:
|
||
|
# [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups]
|
||
|
attn_masks = attn_masks.permute(0, 2, 1).contiguous()
|
||
|
if prev_attn_masks is None:
|
||
|
prev_attn_masks = attn_masks
|
||
|
else:
|
||
|
prev_attn_masks = prev_attn_masks @ attn_masks
|
||
|
# [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width]
|
||
|
cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape)
|
||
|
attn_maps.append(cur_attn_map)
|
||
|
|
||
|
# [batch_size, num_groups, height, width]
|
||
|
final_grouping = attn_maps[-1]
|
||
|
|
||
|
return final_grouping
|
||
|
|
||
|
|
||
|
class GroupViTCrossAttentionLayer(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig):
|
||
|
super().__init__()
|
||
|
self.attn = GroupViTAttention(config)
|
||
|
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = GroupViTMLP(config)
|
||
|
self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, query, key):
|
||
|
x = query
|
||
|
x = x + self.attn(query, encoder_hidden_states=key)[0]
|
||
|
x = x + self.mlp(self.norm2(x))
|
||
|
x = self.norm_post(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class GroupViTAssignAttention(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig):
|
||
|
super().__init__()
|
||
|
self.scale = config.hidden_size**-0.5
|
||
|
|
||
|
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.assign_eps = config.assign_eps
|
||
|
|
||
|
def get_attn(self, attn, gumbel=True, hard=True):
|
||
|
if gumbel and self.training:
|
||
|
attn = gumbel_softmax(attn, dim=-2, hard=hard)
|
||
|
else:
|
||
|
if hard:
|
||
|
attn = hard_softmax(attn, dim=-2)
|
||
|
else:
|
||
|
attn = nn.functional.softmax(attn, dim=-2)
|
||
|
|
||
|
return attn
|
||
|
|
||
|
def forward(self, query, key):
|
||
|
value = key
|
||
|
# [batch_size, query_length, channels]
|
||
|
query = self.q_proj(query)
|
||
|
|
||
|
# [batch_size, key_length, channels]
|
||
|
key = self.k_proj(key)
|
||
|
|
||
|
# [batch_size, key_length, channels]
|
||
|
value = self.v_proj(value)
|
||
|
|
||
|
# [batch_size, query_length, key_length]
|
||
|
raw_attn = (query @ key.transpose(-2, -1)) * self.scale
|
||
|
|
||
|
attn = self.get_attn(raw_attn)
|
||
|
soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False)
|
||
|
|
||
|
attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps)
|
||
|
|
||
|
out = attn @ value
|
||
|
|
||
|
out = self.proj(out)
|
||
|
|
||
|
return out, soft_attn
|
||
|
|
||
|
|
||
|
class GroupViTTokenAssign(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group):
|
||
|
super().__init__()
|
||
|
self.num_output_group = num_output_group
|
||
|
# norm on group_tokens
|
||
|
self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
assign_mlp_ratio = (
|
||
|
config.assign_mlp_ratio
|
||
|
if isinstance(config.assign_mlp_ratio, collections.abc.Iterable)
|
||
|
else (config.assign_mlp_ratio, config.assign_mlp_ratio)
|
||
|
)
|
||
|
tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio]
|
||
|
self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group)
|
||
|
self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
# norm on x
|
||
|
self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.pre_assign_attn = GroupViTCrossAttentionLayer(config)
|
||
|
|
||
|
self.assign = GroupViTAssignAttention(config)
|
||
|
self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size)
|
||
|
|
||
|
def project_group_token(self, group_tokens):
|
||
|
"""
|
||
|
Args:
|
||
|
group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels]
|
||
|
|
||
|
Returns:
|
||
|
projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels]
|
||
|
"""
|
||
|
# [B, num_output_groups, C] <- [B, num_group_tokens, C]
|
||
|
projected_group_tokens = self.mlp_inter(group_tokens)
|
||
|
projected_group_tokens = self.norm_post_tokens(projected_group_tokens)
|
||
|
return projected_group_tokens
|
||
|
|
||
|
def forward(self, image_tokens, group_tokens):
|
||
|
"""
|
||
|
Args:
|
||
|
image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels]
|
||
|
group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels]
|
||
|
"""
|
||
|
|
||
|
group_tokens = self.norm_tokens(group_tokens)
|
||
|
image_tokens = self.norm_x(image_tokens)
|
||
|
# [batch_size, num_output_groups, channels]
|
||
|
projected_group_tokens = self.project_group_token(group_tokens)
|
||
|
projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens)
|
||
|
new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens)
|
||
|
new_image_tokens += projected_group_tokens
|
||
|
|
||
|
new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens))
|
||
|
|
||
|
return new_image_tokens, attention
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class GroupViTModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
||
|
Contrastive loss for image-text similarity.
|
||
|
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
||
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
||
|
similarity scores.
|
||
|
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
||
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
||
|
similarity scores.
|
||
|
segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
|
||
|
Classification scores for each pixel.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
|
||
|
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
|
||
|
original image size as post-processing. You should always check your logits shape and resize as needed.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The text embeddings obtained by applying the projection layer to the pooled output of
|
||
|
[`GroupViTTextModel`].
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooled output of
|
||
|
[`GroupViTVisionModel`].
|
||
|
text_model_output (`BaseModelOutputWithPooling`):
|
||
|
The output of the [`GroupViTTextModel`].
|
||
|
vision_model_output (`BaseModelOutputWithPooling`):
|
||
|
The output of the [`GroupViTVisionModel`].
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits_per_image: torch.FloatTensor = None
|
||
|
logits_per_text: torch.FloatTensor = None
|
||
|
segmentation_logits: torch.FloatTensor = None
|
||
|
text_embeds: torch.FloatTensor = None
|
||
|
image_embeds: torch.FloatTensor = None
|
||
|
text_model_output: BaseModelOutputWithPooling = None
|
||
|
vision_model_output: BaseModelOutputWithPooling = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
return tuple(
|
||
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
||
|
for k in self.keys()
|
||
|
)
|
||
|
|
||
|
|
||
|
class GroupViTPatchEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Image to Patch Embedding.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_size: int = 224,
|
||
|
patch_size: Union[int, Tuple[int, int]] = 16,
|
||
|
num_channels: int = 3,
|
||
|
embed_dim: int = 768,
|
||
|
):
|
||
|
super().__init__()
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
if not interpolate_pos_encoding:
|
||
|
if height != self.image_size[0] or width != self.image_size[1]:
|
||
|
raise ValueError(
|
||
|
f"Input image size ({height}*{width}) doesn't match model"
|
||
|
f" ({self.image_size[0]}*{self.image_size[1]})."
|
||
|
)
|
||
|
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class GroupViTVisionEmbeddings(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.patch_embeddings = GroupViTPatchEmbeddings(
|
||
|
image_size=config.image_size,
|
||
|
patch_size=config.patch_size,
|
||
|
num_channels=config.num_channels,
|
||
|
embed_dim=config.hidden_size,
|
||
|
)
|
||
|
num_patches = self.patch_embeddings.num_patches
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size))
|
||
|
self.dropout = nn.Dropout(config.dropout)
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.config = config
|
||
|
|
||
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
||
|
"""
|
||
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
||
|
resolution images.
|
||
|
|
||
|
Source:
|
||
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
||
|
"""
|
||
|
|
||
|
npatch = embeddings.shape[1]
|
||
|
if npatch == self.position_embeddings.shape[1] and height == width:
|
||
|
return self.position_embeddings
|
||
|
patch_pos_embed = self.position_embeddings
|
||
|
num_original_pos_embed = patch_pos_embed.shape[1]
|
||
|
dim = embeddings.shape[-1]
|
||
|
feat_height = height // self.config.patch_size
|
||
|
feat_width = width // self.config.patch_size
|
||
|
# we add a small number to avoid floating point error in the interpolation
|
||
|
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
||
|
feat_height, feat_width = feat_height + 0.1, feat_width + 0.1
|
||
|
original_height = original_width = math.sqrt(num_original_pos_embed)
|
||
|
reshaped_patch_pos_embed = patch_pos_embed.reshape(1, int(original_height), int(original_width), dim).permute(
|
||
|
0, 3, 1, 2
|
||
|
)
|
||
|
scale_factor = (feat_height / original_height, feat_width / original_width)
|
||
|
patch_pos_embed = nn.functional.interpolate(
|
||
|
reshaped_patch_pos_embed,
|
||
|
scale_factor=scale_factor,
|
||
|
mode="bicubic",
|
||
|
align_corners=False,
|
||
|
)
|
||
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
||
|
return patch_pos_embed
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
|
||
|
batch_size, num_channels, height, width = pixel_values.shape
|
||
|
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
|
||
|
|
||
|
embeddings = self.layernorm(embeddings)
|
||
|
|
||
|
batch_size, seq_len, _ = embeddings.size()
|
||
|
|
||
|
# add positional encoding to each token
|
||
|
if interpolate_pos_encoding:
|
||
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
|
||
|
else:
|
||
|
embeddings = embeddings + self.position_embeddings
|
||
|
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT
|
||
|
class GroupViTTextEmbeddings(nn.Module):
|
||
|
def __init__(self, config: GroupViTTextConfig):
|
||
|
super().__init__()
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
||
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.token_embedding(input_ids)
|
||
|
|
||
|
position_embeddings = self.position_embedding(position_ids)
|
||
|
embeddings = inputs_embeds + position_embeddings
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class GroupViTStage(nn.Module):
|
||
|
"""This corresponds to the `GroupingLayer` class in the GroupViT implementation."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: GroupViTVisionConfig,
|
||
|
depth: int,
|
||
|
num_prev_group_token: int,
|
||
|
num_group_token: int,
|
||
|
num_output_group: int,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.depth = depth
|
||
|
self.num_group_token = num_group_token
|
||
|
if num_group_token > 0:
|
||
|
self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size))
|
||
|
else:
|
||
|
self.group_token = None
|
||
|
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)])
|
||
|
|
||
|
if num_group_token > 0:
|
||
|
self.downsample = GroupViTTokenAssign(
|
||
|
config=config,
|
||
|
num_group_token=num_group_token,
|
||
|
num_output_group=num_output_group,
|
||
|
)
|
||
|
else:
|
||
|
self.downsample = None
|
||
|
|
||
|
if num_prev_group_token > 0 and num_group_token > 0:
|
||
|
self.group_projector = nn.Sequential(
|
||
|
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps),
|
||
|
GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token),
|
||
|
)
|
||
|
else:
|
||
|
self.group_projector = None
|
||
|
|
||
|
@property
|
||
|
def with_group_token(self):
|
||
|
return self.group_token is not None
|
||
|
|
||
|
def split_x(self, x):
|
||
|
if self.with_group_token:
|
||
|
return x[:, : -self.num_group_token], x[:, -self.num_group_token :]
|
||
|
else:
|
||
|
return x, None
|
||
|
|
||
|
def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
if group_token is None:
|
||
|
return x
|
||
|
return torch.cat([x, group_token], dim=1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
prev_group_token: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
`(config.encoder_attention_heads,)`.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the grouping tensors of Grouping block.
|
||
|
"""
|
||
|
if self.with_group_token:
|
||
|
group_token = self.group_token.expand(hidden_states.size(0), -1, -1)
|
||
|
if self.group_projector is not None:
|
||
|
group_token = group_token + self.group_projector(prev_group_token)
|
||
|
else:
|
||
|
group_token = None
|
||
|
|
||
|
x = hidden_states
|
||
|
|
||
|
cat_x = self.concat_x(x, group_token)
|
||
|
for layer in self.layers:
|
||
|
layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None)
|
||
|
cat_x = layer_out[0]
|
||
|
|
||
|
x, group_token = self.split_x(cat_x)
|
||
|
|
||
|
attention = None
|
||
|
if self.downsample is not None:
|
||
|
x, attention = self.downsample(x, group_token)
|
||
|
|
||
|
outputs = (x, group_token)
|
||
|
if output_attentions:
|
||
|
outputs = outputs + (attention,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class GroupViTMLP(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
config: GroupViTVisionConfig,
|
||
|
hidden_size: Optional[int] = None,
|
||
|
intermediate_size: Optional[int] = None,
|
||
|
output_size: Optional[int] = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
|
||
|
intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
|
||
|
output_size = output_size if output_size is not None else hidden_size
|
||
|
self.fc1 = nn.Linear(hidden_size, intermediate_size)
|
||
|
self.fc2 = nn.Linear(intermediate_size, output_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class GroupViTMixerMLP(GroupViTMLP):
|
||
|
def forward(self, x):
|
||
|
x = super().forward(x.transpose(1, 2))
|
||
|
return x.transpose(1, 2)
|
||
|
|
||
|
|
||
|
class GroupViTAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
bsz, tgt_len, embed_dim = hidden_states.size()
|
||
|
is_cross_attention = encoder_hidden_states is not None
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scale
|
||
|
if is_cross_attention:
|
||
|
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
|
||
|
else:
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.view(*proj_shape)
|
||
|
value_states = value_states.view(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
# apply the causal_attention_mask first
|
||
|
if causal_attention_mask is not None:
|
||
|
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
||
|
f" {causal_attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit akward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GroupViT
|
||
|
class GroupViTEncoderLayer(nn.Module):
|
||
|
def __init__(self, config: GroupViTConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.self_attn = GroupViTAttention(config)
|
||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
self.mlp = GroupViTMLP(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
causal_attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||
|
attention_mask (`torch.FloatTensor`): attention mask of size
|
||
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||
|
`(config.encoder_attention_heads,)`.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
causal_attention_mask=causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class GroupViTPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = GroupViTConfig
|
||
|
base_model_prefix = "groupvit"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
|
||
|
init_range = self.config.initializer_range
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=init_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
factor = self.config.initializer_factor
|
||
|
if isinstance(module, GroupViTTextEmbeddings):
|
||
|
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
||
|
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
||
|
elif isinstance(module, GroupViTAttention):
|
||
|
factor = self.config.initializer_factor
|
||
|
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
||
|
out_proj_std = (module.embed_dim**-0.5) * factor
|
||
|
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
||
|
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
||
|
elif isinstance(module, GroupViTMLP):
|
||
|
factor = self.config.initializer_factor
|
||
|
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
||
|
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
||
|
nn.init.normal_(module.fc1.weight, std=fc_std)
|
||
|
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
||
|
|
||
|
|
||
|
GROUPVIT_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
||
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
GROUPVIT_VISION_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
GROUPVIT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
||
|
[`CLIPImageProcessor.__call__`] for details.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether or not to return the contrastive loss.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class GroupViTVisionEncoder(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.stages = nn.ModuleList(
|
||
|
[
|
||
|
GroupViTStage(
|
||
|
config=config,
|
||
|
depth=config.depths[i],
|
||
|
num_group_token=config.num_group_tokens[i],
|
||
|
num_output_group=config.num_output_groups[i],
|
||
|
num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0,
|
||
|
)
|
||
|
for i in range(len(config.depths))
|
||
|
]
|
||
|
)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_groupings = () if output_attentions else None
|
||
|
|
||
|
group_tokens = None
|
||
|
|
||
|
for i, stage in enumerate(self.stages):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_outputs = stage(hidden_states, group_tokens, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
group_tokens = layer_outputs[1]
|
||
|
|
||
|
if output_attentions and layer_outputs[2] is not None:
|
||
|
all_groupings = all_groupings + (layer_outputs[2],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings
|
||
|
)
|
||
|
|
||
|
|
||
|
class GroupViTTextEncoder(nn.Module):
|
||
|
"""
|
||
|
Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a
|
||
|
[`GroupViTEncoderLayer`].
|
||
|
|
||
|
Args:
|
||
|
config: GroupViTTextConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: GroupViTTextConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
causal_attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
for idx, encoder_layer in enumerate(self.layers):
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
causal_attention_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder, CLIP_TEXT->GROUPVIT_TEXT
|
||
|
class GroupViTTextTransformer(nn.Module):
|
||
|
def __init__(self, config: GroupViTTextConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
self.embeddings = GroupViTTextEmbeddings(config)
|
||
|
self.encoder = GroupViTTextEncoder(config)
|
||
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
# For `pooled_output` computation
|
||
|
self.eos_token_id = config.eos_token_id
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None:
|
||
|
raise ValueError("You have to specify input_ids")
|
||
|
|
||
|
input_shape = input_ids.size()
|
||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||
|
|
||
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
||
|
|
||
|
# CLIP's text model uses causal mask, prepare it here.
|
||
|
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
||
|
causal_attention_mask = _create_4d_causal_attention_mask(
|
||
|
input_shape, hidden_states.dtype, device=hidden_states.device
|
||
|
)
|
||
|
# expand attention_mask
|
||
|
if attention_mask is not None:
|
||
|
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
causal_attention_mask=causal_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||
|
|
||
|
if self.eos_token_id == 2:
|
||
|
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
||
|
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
||
|
# ------------------------------------------------------------
|
||
|
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
||
|
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
||
|
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
||
|
pooled_output = last_hidden_state[
|
||
|
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
||
|
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
||
|
]
|
||
|
else:
|
||
|
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
||
|
pooled_output = last_hidden_state[
|
||
|
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
||
|
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
||
|
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
|
||
|
.int()
|
||
|
.argmax(dim=-1),
|
||
|
]
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class GroupViTTextModel(GroupViTPreTrainedModel):
|
||
|
config_class = GroupViTTextConfig
|
||
|
|
||
|
def __init__(self, config: GroupViTTextConfig):
|
||
|
super().__init__(config)
|
||
|
self.text_model = GroupViTTextTransformer(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.text_model.embeddings.token_embedding
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.text_model.embeddings.token_embedding = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import CLIPTokenizer, GroupViTTextModel
|
||
|
|
||
|
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
>>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
|
||
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> last_hidden_state = outputs.last_hidden_state
|
||
|
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
||
|
```"""
|
||
|
return self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
class GroupViTVisionTransformer(nn.Module):
|
||
|
def __init__(self, config: GroupViTVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.embeddings = GroupViTVisionEmbeddings(config)
|
||
|
self.encoder = GroupViTVisionEncoder(config)
|
||
|
self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
hidden_states=hidden_states,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
output_attentions=output_attentions,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
|
||
|
# normalize the last hidden state
|
||
|
last_hidden_state = self.layernorm(last_hidden_state)
|
||
|
pooled_output = last_hidden_state.mean(dim=1)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class GroupViTVisionModel(GroupViTPreTrainedModel):
|
||
|
config_class = GroupViTVisionConfig
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: GroupViTVisionConfig):
|
||
|
super().__init__(config)
|
||
|
self.vision_model = GroupViTVisionTransformer(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> GroupViTPatchEmbeddings:
|
||
|
return self.vision_model.embeddings.patch_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, GroupViTVisionModel
|
||
|
|
||
|
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
>>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> last_hidden_state = outputs.last_hidden_state
|
||
|
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
||
|
```"""
|
||
|
return self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(GROUPVIT_START_DOCSTRING)
|
||
|
class GroupViTModel(GroupViTPreTrainedModel):
|
||
|
config_class = GroupViTConfig
|
||
|
|
||
|
def __init__(self, config: GroupViTConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if not isinstance(config.text_config, GroupViTTextConfig):
|
||
|
raise ValueError(
|
||
|
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
|
||
|
f" {type(config.text_config)}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(config.vision_config, GroupViTVisionConfig):
|
||
|
raise ValueError(
|
||
|
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
|
||
|
f" {type(config.vision_config)}."
|
||
|
)
|
||
|
|
||
|
text_config = config.text_config
|
||
|
vision_config = config.vision_config
|
||
|
|
||
|
self.projection_dim = config.projection_dim
|
||
|
self.projection_intermediate_dim = config.projection_intermediate_dim
|
||
|
self.text_embed_dim = text_config.hidden_size
|
||
|
self.vision_embed_dim = vision_config.hidden_size
|
||
|
|
||
|
self.text_model = GroupViTTextTransformer(text_config)
|
||
|
self.vision_model = GroupViTVisionTransformer(vision_config)
|
||
|
|
||
|
self.visual_projection = nn.Sequential(
|
||
|
nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True),
|
||
|
nn.BatchNorm1d(self.projection_intermediate_dim),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
|
||
|
)
|
||
|
self.text_projection = nn.Sequential(
|
||
|
nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True),
|
||
|
nn.BatchNorm1d(self.projection_intermediate_dim),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
|
||
|
)
|
||
|
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
|
||
|
def get_text_features(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`GroupViTTextModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import CLIPTokenizer, GroupViTModel
|
||
|
|
||
|
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
|
||
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
||
|
>>> text_features = model.get_text_features(**inputs)
|
||
|
```"""
|
||
|
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = text_outputs[1]
|
||
|
text_features = self.text_projection(pooled_output)
|
||
|
|
||
|
return text_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
|
||
|
def get_image_features(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`GroupViTVisionModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, GroupViTModel
|
||
|
|
||
|
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> image_features = model.get_image_features(**inputs)
|
||
|
```"""
|
||
|
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = vision_outputs[1] # pooled_output
|
||
|
image_features = self.visual_projection(pooled_output)
|
||
|
|
||
|
return image_features
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=GroupViTModelOutput, config_class=GroupViTConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_segmentation: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, GroupViTModelOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, GroupViTModel
|
||
|
|
||
|
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(
|
||
|
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
||
|
... )
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
||
|
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
||
|
```"""
|
||
|
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_segmentation = (
|
||
|
output_segmentation if output_segmentation is not None else self.config.output_segmentation
|
||
|
)
|
||
|
if output_segmentation:
|
||
|
output_attentions = True
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[1]
|
||
|
image_embeds = self.visual_projection(image_embeds)
|
||
|
|
||
|
text_embeds = text_outputs[1]
|
||
|
text_embeds = self.text_projection(text_embeds)
|
||
|
|
||
|
# normalized features
|
||
|
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
||
|
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
||
|
|
||
|
# cosine similarity as logits
|
||
|
logit_scale = self.logit_scale.exp()
|
||
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
||
|
logits_per_image = logits_per_text.t()
|
||
|
|
||
|
seg_logits = None
|
||
|
if output_segmentation:
|
||
|
# grouped features
|
||
|
# [batch_size_image, num_group, hidden_size]
|
||
|
image_group_embeds = vision_outputs[0]
|
||
|
# [batch_size_image*num_group, hidden_size]
|
||
|
image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1]))
|
||
|
if output_hidden_states:
|
||
|
attentions = vision_outputs[3]
|
||
|
else:
|
||
|
attentions = vision_outputs[2]
|
||
|
# [batch_size_image, num_group, height, width]
|
||
|
grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:])
|
||
|
|
||
|
# normalized features
|
||
|
image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True)
|
||
|
# [batch_size_image x num_group, batch_size_text]
|
||
|
logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale
|
||
|
# [batch_size_image, batch_size_text, num_group]
|
||
|
logits_per_image_group = logits_per_image_group.reshape(
|
||
|
image_embeds.shape[0], -1, text_embeds.shape[0]
|
||
|
).permute(0, 2, 1)
|
||
|
|
||
|
# [batch_size_image, batch_size_text, height x width]
|
||
|
flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1)
|
||
|
|
||
|
# [batch_size_image, batch_size_text, height, width]
|
||
|
seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale
|
||
|
seg_logits = seg_logits.reshape(
|
||
|
seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3]
|
||
|
)
|
||
|
|
||
|
loss = None
|
||
|
if return_loss:
|
||
|
loss = groupvit_loss(logits_per_text)
|
||
|
|
||
|
if not return_dict:
|
||
|
if seg_logits is not None:
|
||
|
output = (
|
||
|
logits_per_image,
|
||
|
logits_per_text,
|
||
|
seg_logits,
|
||
|
text_embeds,
|
||
|
image_embeds,
|
||
|
text_outputs,
|
||
|
vision_outputs,
|
||
|
)
|
||
|
else:
|
||
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return GroupViTModelOutput(
|
||
|
loss=loss,
|
||
|
logits_per_image=logits_per_image,
|
||
|
logits_per_text=logits_per_text,
|
||
|
segmentation_logits=seg_logits,
|
||
|
text_embeds=text_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
text_model_output=text_outputs,
|
||
|
vision_model_output=vision_outputs,
|
||
|
)
|