263 lines
12 KiB
Python
263 lines
12 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Idefics2 model configuration"""
|
||
|
|
||
|
import os
|
||
|
from typing import Union
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
from ..auto import CONFIG_MAPPING
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class Idefics2VisionConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
|
||
|
Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
|
||
|
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
|
||
|
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
Number of channels in the input images.
|
||
|
image_size (`int`, *optional*, defaults to 224):
|
||
|
The size (resolution) of each image.
|
||
|
patch_size (`int`, *optional*, defaults to 32):
|
||
|
The size (resolution) of each patch.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
intializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation for initializing all weight matrices in the model.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
||
|
>>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig
|
||
|
|
||
|
>>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
|
||
|
>>> configuration = Idefics2VisionConfig()
|
||
|
|
||
|
>>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
|
||
|
>>> model = Idefics2VisionTransformer(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "idefics2"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
num_channels=3,
|
||
|
image_size=224,
|
||
|
patch_size=32,
|
||
|
hidden_act="gelu_pytorch_tanh",
|
||
|
layer_norm_eps=1e-6,
|
||
|
attention_dropout=0.0,
|
||
|
initializer_range=0.02,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.num_channels = num_channels
|
||
|
self.patch_size = patch_size
|
||
|
self.image_size = image_size
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the vision config dict if we are loading from Idefics2Config
|
||
|
if config_dict.get("model_type") == "idefics2":
|
||
|
config_dict = config_dict["vision_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class Idefics2PerceiverConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the perceiver block.
|
||
|
resampler_n_latents (`int`, *optional*, defaults to 64):
|
||
|
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
|
||
|
resampler_depth (`int`, *optional*, defaults to 3):
|
||
|
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
|
||
|
resampler_n_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of heads in each Transformer block (for multi-headed self-attention).
|
||
|
resampler_head_dim (`int`, *optional*, defaults to 96):
|
||
|
Dimensionality of each head projection in the Transformer block.
|
||
|
num_key_value_heads (`int`, *optional*, defaults to 4):
|
||
|
Number of key-value heads in the perceiver attention block.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
"""
|
||
|
|
||
|
model_type = "idefics2"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_act="silu",
|
||
|
resampler_n_latents=64,
|
||
|
resampler_depth=3,
|
||
|
resampler_n_heads=16,
|
||
|
resampler_head_dim=96,
|
||
|
num_key_value_heads=4,
|
||
|
attention_dropout=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.hidden_act = hidden_act
|
||
|
self.resampler_n_latents = resampler_n_latents
|
||
|
self.resampler_depth = resampler_depth
|
||
|
self.resampler_n_heads = resampler_n_heads
|
||
|
self.num_key_value_heads = num_key_value_heads
|
||
|
self.resampler_head_dim = resampler_head_dim
|
||
|
self.attention_dropout = attention_dropout
|
||
|
if self.num_key_value_heads > self.resampler_n_heads:
|
||
|
raise ValueError(
|
||
|
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
|
||
|
f" resampler_n_heads={self.resampler_n_heads}"
|
||
|
)
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
|
||
|
class Idefics2Config(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
|
||
|
Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
|
||
|
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should cache the key/value pairs of the attention mechanism.
|
||
|
image_token_id (`int`, *optional*, defaults to 32001):
|
||
|
The id of the "image" token.
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to tie the word embeddings with the token embeddings.
|
||
|
vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
|
||
|
Custom vision config or dict
|
||
|
perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
|
||
|
Custom perceiver config or dict
|
||
|
text_config (`MistralConfig` or `dict`, *optional*):
|
||
|
Custom text config or dict for the text model
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
>>> from transformers import Idefics2Model, Idefics2Config
|
||
|
>>> # Initializing configuration
|
||
|
>>> configuration = Idefics2Config()
|
||
|
>>> # Initializing a model from the configuration
|
||
|
>>> model = Idefics2Model(configuration)
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "idefics2"
|
||
|
is_composition = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
use_cache=True,
|
||
|
image_token_id=32_001,
|
||
|
tie_word_embeddings=False,
|
||
|
vision_config=None,
|
||
|
perceiver_config=None,
|
||
|
text_config=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.image_token_id = image_token_id
|
||
|
self.use_cache = use_cache
|
||
|
self.tie_word_embeddings = tie_word_embeddings
|
||
|
|
||
|
if perceiver_config is None:
|
||
|
self.perceiver_config = Idefics2PerceiverConfig()
|
||
|
logger.info("perciver_config is None, using default perceiver config")
|
||
|
elif isinstance(perceiver_config, dict):
|
||
|
self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config)
|
||
|
elif isinstance(perceiver_config, Idefics2PerceiverConfig):
|
||
|
self.perceiver_config = perceiver_config
|
||
|
|
||
|
if vision_config is None:
|
||
|
self.vision_config = Idefics2VisionConfig()
|
||
|
logger.info("vision_config is None, using default vision config")
|
||
|
elif isinstance(vision_config, dict):
|
||
|
self.vision_config = Idefics2VisionConfig(**vision_config)
|
||
|
elif isinstance(vision_config, Idefics2VisionConfig):
|
||
|
self.vision_config = vision_config
|
||
|
|
||
|
if isinstance(text_config, dict):
|
||
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral"
|
||
|
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
||
|
elif text_config is None:
|
||
|
logger.info("text_config is None, using default text config")
|
||
|
text_config = CONFIG_MAPPING["mistral"](
|
||
|
max_position_embeddings=4096 * 8,
|
||
|
rms_norm_eps=1e-5,
|
||
|
# None in the original configuration_mistral, we set it to the unk_token_id
|
||
|
pad_token_id=0,
|
||
|
tie_word_embeddings=False,
|
||
|
)
|
||
|
|
||
|
self.text_config = text_config
|
||
|
|
||
|
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
|