ai-content-maker/.venv/Lib/site-packages/transformers/models/layoutlmv2/configuration_layoutlmv2.py

223 lines
11 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LayoutLMv2 model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import is_detectron2_available, logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
# soft dependency
if is_detectron2_available():
import detectron2
class LayoutLMv2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
[microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
[`TFLayoutLMv2Model`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the 2D position embedding might ever be used with. Typically set this to something
large just in case (e.g., 1024).
max_rel_pos (`int`, *optional*, defaults to 128):
The maximum number of relative positions to be used in the self-attention mechanism.
rel_pos_bins (`int`, *optional*, defaults to 32):
The number of relative position bins to be used in the self-attention mechanism.
fast_qkv (`bool`, *optional*, defaults to `True`):
Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
max_rel_2d_pos (`int`, *optional*, defaults to 256):
The maximum number of relative 2D positions in the self-attention mechanism.
rel_2d_pos_bins (`int`, *optional*, defaults to 64):
The number of 2D relative position bins in the self-attention mechanism.
image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
The shape of the average-pooled feature map.
coordinate_size (`int`, *optional*, defaults to 128):
Dimension of the coordinate embeddings.
shape_size (`int`, *optional*, defaults to 128):
Dimension of the width and height embeddings.
has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a relative attention bias in the self-attention mechanism.
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use a spatial attention bias in the self-attention mechanism.
has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
Whether or not to add visual segment embeddings.
detectron2_config_args (`dict`, *optional*):
Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
for details regarding default values.
Example:
```python
>>> from transformers import LayoutLMv2Config, LayoutLMv2Model
>>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
>>> configuration = LayoutLMv2Config()
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
>>> model = LayoutLMv2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "layoutlmv2"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
max_2d_position_embeddings=1024,
max_rel_pos=128,
rel_pos_bins=32,
fast_qkv=True,
max_rel_2d_pos=256,
rel_2d_pos_bins=64,
convert_sync_batchnorm=True,
image_feature_pool_shape=[7, 7, 256],
coordinate_size=128,
shape_size=128,
has_relative_attention_bias=True,
has_spatial_attention_bias=True,
has_visual_segment_embedding=False,
detectron2_config_args=None,
**kwargs,
):
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
hidden_dropout_prob=hidden_dropout_prob,
attention_probs_dropout_prob=attention_probs_dropout_prob,
max_position_embeddings=max_position_embeddings,
type_vocab_size=type_vocab_size,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
pad_token_id=pad_token_id,
**kwargs,
)
self.max_2d_position_embeddings = max_2d_position_embeddings
self.max_rel_pos = max_rel_pos
self.rel_pos_bins = rel_pos_bins
self.fast_qkv = fast_qkv
self.max_rel_2d_pos = max_rel_2d_pos
self.rel_2d_pos_bins = rel_2d_pos_bins
self.convert_sync_batchnorm = convert_sync_batchnorm
self.image_feature_pool_shape = image_feature_pool_shape
self.coordinate_size = coordinate_size
self.shape_size = shape_size
self.has_relative_attention_bias = has_relative_attention_bias
self.has_spatial_attention_bias = has_spatial_attention_bias
self.has_visual_segment_embedding = has_visual_segment_embedding
self.detectron2_config_args = (
detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
)
@classmethod
def get_default_detectron2_config(self):
return {
"MODEL.MASK_ON": True,
"MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
"MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
"MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
"MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
"MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
"MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
"MODEL.POST_NMS_TOPK_TEST": 1000,
"MODEL.ROI_HEADS.NAME": "StandardROIHeads",
"MODEL.ROI_HEADS.NUM_CLASSES": 5,
"MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
"MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
"MODEL.ROI_BOX_HEAD.NUM_FC": 2,
"MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
"MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
"MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
"MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
"MODEL.RESNETS.DEPTH": 101,
"MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
"MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
"MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
"MODEL.RESNETS.NUM_GROUPS": 32,
"MODEL.RESNETS.WIDTH_PER_GROUP": 8,
"MODEL.RESNETS.STRIDE_IN_1X1": False,
}
def get_detectron2_config(self):
detectron2_config = detectron2.config.get_cfg()
for k, v in self.detectron2_config_args.items():
attributes = k.split(".")
to_set = detectron2_config
for attribute in attributes[:-1]:
to_set = getattr(to_set, attribute)
setattr(to_set, attributes[-1], v)
return detectron2_config