294 lines
13 KiB
Python
294 lines
13 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" LayoutLMv3 model configuration"""
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
from typing import TYPE_CHECKING, Any, Mapping, Optional
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...onnx.utils import compute_effective_axis_dimension
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ...processing_utils import ProcessorMixin
|
||
|
from ...utils import TensorType
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class LayoutLMv3Config(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`LayoutLMv3Model`]. It is used to instantiate an
|
||
|
LayoutLMv3 model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the LayoutLMv3
|
||
|
[microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 50265):
|
||
|
Vocabulary size of the LayoutLMv3 model. Defines the number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`LayoutLMv3Model`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimension of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv3Model`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
|
||
|
The maximum value that the 2D position embedding might ever be used with. Typically set this to something
|
||
|
large just in case (e.g., 1024).
|
||
|
coordinate_size (`int`, *optional*, defaults to `128`):
|
||
|
Dimension of the coordinate embeddings.
|
||
|
shape_size (`int`, *optional*, defaults to `128`):
|
||
|
Dimension of the width and height embeddings.
|
||
|
has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to use a relative attention bias in the self-attention mechanism.
|
||
|
rel_pos_bins (`int`, *optional*, defaults to 32):
|
||
|
The number of relative position bins to be used in the self-attention mechanism.
|
||
|
max_rel_pos (`int`, *optional*, defaults to 128):
|
||
|
The maximum number of relative positions to be used in the self-attention mechanism.
|
||
|
max_rel_2d_pos (`int`, *optional*, defaults to 256):
|
||
|
The maximum number of relative 2D positions in the self-attention mechanism.
|
||
|
rel_2d_pos_bins (`int`, *optional*, defaults to 64):
|
||
|
The number of 2D relative position bins in the self-attention mechanism.
|
||
|
has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to use a spatial attention bias in the self-attention mechanism.
|
||
|
visual_embed (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add patch embeddings.
|
||
|
input_size (`int`, *optional*, defaults to `224`):
|
||
|
The size (resolution) of the images.
|
||
|
num_channels (`int`, *optional*, defaults to `3`):
|
||
|
The number of channels of the images.
|
||
|
patch_size (`int`, *optional*, defaults to `16`)
|
||
|
The size (resolution) of the patches.
|
||
|
classifier_dropout (`float`, *optional*):
|
||
|
The dropout ratio for the classification head.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import LayoutLMv3Config, LayoutLMv3Model
|
||
|
|
||
|
>>> # Initializing a LayoutLMv3 microsoft/layoutlmv3-base style configuration
|
||
|
>>> configuration = LayoutLMv3Config()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the microsoft/layoutlmv3-base style configuration
|
||
|
>>> model = LayoutLMv3Model(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "layoutlmv3"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=50265,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-5,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
max_2d_position_embeddings=1024,
|
||
|
coordinate_size=128,
|
||
|
shape_size=128,
|
||
|
has_relative_attention_bias=True,
|
||
|
rel_pos_bins=32,
|
||
|
max_rel_pos=128,
|
||
|
rel_2d_pos_bins=64,
|
||
|
max_rel_2d_pos=256,
|
||
|
has_spatial_attention_bias=True,
|
||
|
text_embed=True,
|
||
|
visual_embed=True,
|
||
|
input_size=224,
|
||
|
num_channels=3,
|
||
|
patch_size=16,
|
||
|
classifier_dropout=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
vocab_size=vocab_size,
|
||
|
hidden_size=hidden_size,
|
||
|
num_hidden_layers=num_hidden_layers,
|
||
|
num_attention_heads=num_attention_heads,
|
||
|
intermediate_size=intermediate_size,
|
||
|
hidden_act=hidden_act,
|
||
|
hidden_dropout_prob=hidden_dropout_prob,
|
||
|
attention_probs_dropout_prob=attention_probs_dropout_prob,
|
||
|
max_position_embeddings=max_position_embeddings,
|
||
|
type_vocab_size=type_vocab_size,
|
||
|
initializer_range=initializer_range,
|
||
|
layer_norm_eps=layer_norm_eps,
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
self.max_2d_position_embeddings = max_2d_position_embeddings
|
||
|
self.coordinate_size = coordinate_size
|
||
|
self.shape_size = shape_size
|
||
|
self.has_relative_attention_bias = has_relative_attention_bias
|
||
|
self.rel_pos_bins = rel_pos_bins
|
||
|
self.max_rel_pos = max_rel_pos
|
||
|
self.has_spatial_attention_bias = has_spatial_attention_bias
|
||
|
self.rel_2d_pos_bins = rel_2d_pos_bins
|
||
|
self.max_rel_2d_pos = max_rel_2d_pos
|
||
|
self.text_embed = text_embed
|
||
|
self.visual_embed = visual_embed
|
||
|
self.input_size = input_size
|
||
|
self.num_channels = num_channels
|
||
|
self.patch_size = patch_size
|
||
|
self.classifier_dropout = classifier_dropout
|
||
|
|
||
|
|
||
|
class LayoutLMv3OnnxConfig(OnnxConfig):
|
||
|
torch_onnx_minimum_version = version.parse("1.12")
|
||
|
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
# The order of inputs is different for question answering and sequence classification
|
||
|
if self.task in ["question-answering", "sequence-classification"]:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("input_ids", {0: "batch", 1: "sequence"}),
|
||
|
("attention_mask", {0: "batch", 1: "sequence"}),
|
||
|
("bbox", {0: "batch", 1: "sequence"}),
|
||
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
||
|
]
|
||
|
)
|
||
|
else:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("input_ids", {0: "batch", 1: "sequence"}),
|
||
|
("bbox", {0: "batch", 1: "sequence"}),
|
||
|
("attention_mask", {0: "batch", 1: "sequence"}),
|
||
|
("pixel_values", {0: "batch", 1: "num_channels"}),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def atol_for_validation(self) -> float:
|
||
|
return 1e-5
|
||
|
|
||
|
@property
|
||
|
def default_onnx_opset(self) -> int:
|
||
|
return 12
|
||
|
|
||
|
def generate_dummy_inputs(
|
||
|
self,
|
||
|
processor: "ProcessorMixin",
|
||
|
batch_size: int = -1,
|
||
|
seq_length: int = -1,
|
||
|
is_pair: bool = False,
|
||
|
framework: Optional["TensorType"] = None,
|
||
|
num_channels: int = 3,
|
||
|
image_width: int = 40,
|
||
|
image_height: int = 40,
|
||
|
) -> Mapping[str, Any]:
|
||
|
"""
|
||
|
Generate inputs to provide to the ONNX exporter for the specific framework
|
||
|
|
||
|
Args:
|
||
|
processor ([`ProcessorMixin`]):
|
||
|
The processor associated with this model configuration.
|
||
|
batch_size (`int`, *optional*, defaults to -1):
|
||
|
The batch size to export the model for (-1 means dynamic axis).
|
||
|
seq_length (`int`, *optional*, defaults to -1):
|
||
|
The sequence length to export the model for (-1 means dynamic axis).
|
||
|
is_pair (`bool`, *optional*, defaults to `False`):
|
||
|
Indicate if the input is a pair (sentence 1, sentence 2).
|
||
|
framework (`TensorType`, *optional*, defaults to `None`):
|
||
|
The framework (PyTorch or TensorFlow) that the processor will generate tensors for.
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of channels of the generated images.
|
||
|
image_width (`int`, *optional*, defaults to 40):
|
||
|
The width of the generated images.
|
||
|
image_height (`int`, *optional*, defaults to 40):
|
||
|
The height of the generated images.
|
||
|
|
||
|
Returns:
|
||
|
Mapping[str, Any]: holding the kwargs to provide to the model's forward function
|
||
|
"""
|
||
|
|
||
|
# A dummy image is used so OCR should not be applied
|
||
|
setattr(processor.image_processor, "apply_ocr", False)
|
||
|
|
||
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
||
|
batch_size = compute_effective_axis_dimension(
|
||
|
batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
|
||
|
)
|
||
|
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
||
|
token_to_add = processor.tokenizer.num_special_tokens_to_add(is_pair)
|
||
|
seq_length = compute_effective_axis_dimension(
|
||
|
seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
|
||
|
)
|
||
|
# Generate dummy inputs according to compute batch and sequence
|
||
|
dummy_text = [[" ".join([processor.tokenizer.unk_token]) * seq_length]] * batch_size
|
||
|
|
||
|
# Generate dummy bounding boxes
|
||
|
dummy_bboxes = [[[48, 84, 73, 128]]] * batch_size
|
||
|
|
||
|
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
||
|
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
|
||
|
dummy_image = self._generate_dummy_images(batch_size, num_channels, image_height, image_width)
|
||
|
|
||
|
inputs = dict(
|
||
|
processor(
|
||
|
dummy_image,
|
||
|
text=dummy_text,
|
||
|
boxes=dummy_bboxes,
|
||
|
return_tensors=framework,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
return inputs
|