472 lines
22 KiB
Python
472 lines
22 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||
|
# and OPT implementations in this library. It has been modified from its
|
||
|
# original forms to accommodate minor architectural differences compared
|
||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
"""Tokenization classes for LLaMA."""
|
||
|
import os
|
||
|
from shutil import copyfile
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||
|
|
||
|
import sentencepiece as spm
|
||
|
|
||
|
from ...convert_slow_tokenizer import import_protobuf
|
||
|
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ...tokenization_utils_base import TextInput
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
||
|
|
||
|
SPIECE_UNDERLINE = "▁"
|
||
|
|
||
|
B_INST, E_INST = "[INST]", "[/INST]"
|
||
|
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
||
|
|
||
|
# fmt: off
|
||
|
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
|
||
|
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
|
||
|
that your responses are socially unbiased and positive in nature.
|
||
|
|
||
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
|
||
|
correct. If you don't know the answer to a question, please don't share false information."""
|
||
|
# fmt: on
|
||
|
|
||
|
|
||
|
class LlamaTokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
|
||
|
no padding token in the original model.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
Path to the vocabulary file.
|
||
|
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
|
||
|
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
||
|
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sequence token.
|
||
|
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
||
|
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
||
|
attention mechanisms or loss computation.
|
||
|
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
|
||
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
||
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
||
|
to set:
|
||
|
|
||
|
- `enable_sampling`: Enable subword regularization.
|
||
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
||
|
|
||
|
- `nbest_size = {0,1}`: No sampling is performed.
|
||
|
- `nbest_size > 1`: samples from the nbest_size results.
|
||
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
||
|
using forward-filtering-and-backward-sampling algorithm.
|
||
|
|
||
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
||
|
BPE-dropout.
|
||
|
|
||
|
add_bos_token (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add an `bos_token` at the start of sequences.
|
||
|
add_eos_token (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to add an `eos_token` at the end of sequences.
|
||
|
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
|
||
|
extra spaces.
|
||
|
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the default system prompt for Llama should be used.
|
||
|
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to add spaces between special tokens.
|
||
|
legacy (`bool`, *optional*):
|
||
|
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
|
||
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
|
||
|
example:
|
||
|
|
||
|
- `legacy=True`:
|
||
|
```python
|
||
|
>>> from transformers import T5Tokenizer
|
||
|
|
||
|
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True)
|
||
|
>>> tokenizer.encode("Hello <extra_id_0>.")
|
||
|
[8774, 32099, 3, 5, 1]
|
||
|
```
|
||
|
- `legacy=False`:
|
||
|
```python
|
||
|
>>> from transformers import T5Tokenizer
|
||
|
|
||
|
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False)
|
||
|
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
||
|
[8774, 32099, 5, 1]
|
||
|
```
|
||
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
||
|
add_prefix_space (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||
|
other word.
|
||
|
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
unk_token="<unk>",
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
pad_token=None,
|
||
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
add_bos_token=True,
|
||
|
add_eos_token=False,
|
||
|
clean_up_tokenization_spaces=False,
|
||
|
use_default_system_prompt=False,
|
||
|
spaces_between_special_tokens=False,
|
||
|
legacy=None,
|
||
|
add_prefix_space=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||
|
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
||
|
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
||
|
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
||
|
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
||
|
|
||
|
if legacy is None:
|
||
|
logger.warning_once(
|
||
|
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
||
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
||
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
||
|
" means, and thoroughly read the reason why this was added as explained in"
|
||
|
" https://github.com/huggingface/transformers/pull/24565"
|
||
|
)
|
||
|
legacy = True
|
||
|
|
||
|
self.legacy = legacy
|
||
|
self.vocab_file = vocab_file
|
||
|
self.add_bos_token = add_bos_token
|
||
|
self.add_eos_token = add_eos_token
|
||
|
self.use_default_system_prompt = use_default_system_prompt
|
||
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
||
|
self.add_prefix_space = add_prefix_space
|
||
|
|
||
|
super().__init__(
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
unk_token=unk_token,
|
||
|
pad_token=pad_token,
|
||
|
add_bos_token=add_bos_token,
|
||
|
add_eos_token=add_eos_token,
|
||
|
sp_model_kwargs=self.sp_model_kwargs,
|
||
|
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||
|
use_default_system_prompt=use_default_system_prompt,
|
||
|
spaces_between_special_tokens=spaces_between_special_tokens,
|
||
|
legacy=legacy,
|
||
|
add_prefix_space=add_prefix_space,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def unk_token_length(self):
|
||
|
return len(self.sp_model.encode(str(self.unk_token)))
|
||
|
|
||
|
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
||
|
def get_spm_processor(self, from_slow=False):
|
||
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
if self.legacy or from_slow: # no dependency on protobuf
|
||
|
tokenizer.Load(self.vocab_file)
|
||
|
return tokenizer
|
||
|
|
||
|
with open(self.vocab_file, "rb") as f:
|
||
|
sp_model = f.read()
|
||
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
||
|
model = model_pb2.ModelProto.FromString(sp_model)
|
||
|
normalizer_spec = model_pb2.NormalizerSpec()
|
||
|
normalizer_spec.add_dummy_prefix = False
|
||
|
model.normalizer_spec.MergeFrom(normalizer_spec)
|
||
|
sp_model = model.SerializeToString()
|
||
|
tokenizer.LoadFromSerializedProto(sp_model)
|
||
|
return tokenizer
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
state["sp_model"] = None
|
||
|
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
||
|
return state
|
||
|
|
||
|
def __setstate__(self, d):
|
||
|
self.__dict__ = d
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self):
|
||
|
"""Returns vocab size"""
|
||
|
return self.sp_model.get_piece_size()
|
||
|
|
||
|
def get_vocab(self):
|
||
|
"""Returns vocab as a dict"""
|
||
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||
|
vocab.update(self.added_tokens_encoder)
|
||
|
return vocab
|
||
|
|
||
|
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
|
||
|
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
||
|
"""
|
||
|
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
||
|
first token is special.
|
||
|
"""
|
||
|
if self.legacy or len(text) == 0:
|
||
|
return super().tokenize(text, **kwargs)
|
||
|
|
||
|
text = text.replace(SPIECE_UNDERLINE, " ")
|
||
|
if self.add_prefix_space:
|
||
|
text = SPIECE_UNDERLINE + text
|
||
|
|
||
|
tokens = super().tokenize(text, **kwargs)
|
||
|
|
||
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
||
|
tokens = tokens[1:]
|
||
|
return tokens
|
||
|
|
||
|
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
|
||
|
def _tokenize(self, text, **kwargs):
|
||
|
"""
|
||
|
Returns a tokenized string.
|
||
|
|
||
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
||
|
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
||
|
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
||
|
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
||
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
||
|
"""
|
||
|
tokens = self.sp_model.encode(text, out_type=str)
|
||
|
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
||
|
return tokens
|
||
|
|
||
|
# 1. Encode string + prefix ex: "<unk> Hey"
|
||
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
||
|
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
||
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
||
|
|
||
|
def _convert_token_to_id(self, token):
|
||
|
"""Converts a token (str) in an id using the vocab."""
|
||
|
return self.sp_model.piece_to_id(token)
|
||
|
|
||
|
def _convert_id_to_token(self, index):
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
token = self.sp_model.IdToPiece(index)
|
||
|
return token
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens):
|
||
|
"""Converts a sequence of tokens (string) in a single string."""
|
||
|
# since we manually add the prefix space, we have to remove it when decoding
|
||
|
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
||
|
tokens[0] = tokens[0][1:]
|
||
|
|
||
|
current_sub_tokens = []
|
||
|
out_string = ""
|
||
|
prev_is_special = False
|
||
|
for i, token in enumerate(tokens):
|
||
|
# make sure that special tokens are not decoded using sentencepiece model
|
||
|
if token in self.all_special_tokens:
|
||
|
if not prev_is_special and i != 0 and self.legacy:
|
||
|
out_string += " "
|
||
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||
|
prev_is_special = True
|
||
|
current_sub_tokens = []
|
||
|
else:
|
||
|
if prev_is_special and i == 1 and self.add_prefix_space and not token.startswith(SPIECE_UNDERLINE):
|
||
|
out_string += " "
|
||
|
current_sub_tokens.append(token)
|
||
|
prev_is_special = False
|
||
|
out_string += self.sp_model.decode(current_sub_tokens)
|
||
|
return out_string
|
||
|
|
||
|
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
"""
|
||
|
Save the vocabulary and special tokens file to a directory.
|
||
|
|
||
|
Args:
|
||
|
save_directory (`str`):
|
||
|
The directory in which to save the vocabulary.
|
||
|
|
||
|
Returns:
|
||
|
`Tuple(str)`: Paths to the files saved.
|
||
|
"""
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
out_vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||
|
copyfile(self.vocab_file, out_vocab_file)
|
||
|
elif not os.path.isfile(self.vocab_file):
|
||
|
with open(out_vocab_file, "wb") as fi:
|
||
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
||
|
fi.write(content_spiece_model)
|
||
|
|
||
|
return (out_vocab_file,)
|
||
|
|
||
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
||
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||
|
|
||
|
output = bos_token_id + token_ids_0 + eos_token_id
|
||
|
|
||
|
if token_ids_1 is not None:
|
||
|
output = output + bos_token_id + token_ids_1 + eos_token_id
|
||
|
|
||
|
return output
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||
|
special tokens using the tokenizer `prepare_for_model` method.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of IDs.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the token list is already formatted with special tokens for the model.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||
|
"""
|
||
|
if already_has_special_tokens:
|
||
|
return super().get_special_tokens_mask(
|
||
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||
|
)
|
||
|
|
||
|
bos_token_id = [1] if self.add_bos_token else []
|
||
|
eos_token_id = [1] if self.add_eos_token else []
|
||
|
|
||
|
if token_ids_1 is None:
|
||
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
||
|
return (
|
||
|
bos_token_id
|
||
|
+ ([0] * len(token_ids_0))
|
||
|
+ eos_token_id
|
||
|
+ bos_token_id
|
||
|
+ ([0] * len(token_ids_1))
|
||
|
+ eos_token_id
|
||
|
)
|
||
|
|
||
|
def create_token_type_ids_from_sequences(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
||
|
sequence pair mask has the following format:
|
||
|
|
||
|
```
|
||
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
||
|
| first sequence | second sequence |
|
||
|
```
|
||
|
|
||
|
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of ids.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
||
|
"""
|
||
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||
|
|
||
|
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
||
|
|
||
|
if token_ids_1 is not None:
|
||
|
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
||
|
|
||
|
return output
|
||
|
|
||
|
@property
|
||
|
def default_chat_template(self):
|
||
|
"""
|
||
|
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
|
||
|
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
|
||
|
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
|
||
|
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
|
||
|
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
|
||
|
to fine-tune a model with more flexible role ordering!
|
||
|
|
||
|
The output should look something like:
|
||
|
|
||
|
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
|
||
|
<bos>[INST] Prompt [/INST]
|
||
|
|
||
|
The reference for this chat template is [this code
|
||
|
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
|
||
|
in the original repository.
|
||
|
"""
|
||
|
logger.warning_once(
|
||
|
"\nNo chat template is defined for this tokenizer - using the default template "
|
||
|
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
||
|
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
||
|
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
||
|
)
|
||
|
template = (
|
||
|
"{% if messages[0]['role'] == 'system' %}"
|
||
|
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present
|
||
|
"{% set system_message = messages[0]['content'] %}"
|
||
|
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
|
||
|
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set
|
||
|
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
|
||
|
"{% else %}"
|
||
|
"{% set loop_messages = messages %}"
|
||
|
"{% set system_message = false %}"
|
||
|
"{% endif %}"
|
||
|
"{% for message in loop_messages %}" # Loop over all non-system messages
|
||
|
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
|
||
|
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
|
||
|
"{% endif %}"
|
||
|
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
|
||
|
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
|
||
|
"{% else %}"
|
||
|
"{% set content = message['content'] %}"
|
||
|
"{% endif %}"
|
||
|
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
|
||
|
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
|
||
|
"{% elif message['role'] == 'system' %}"
|
||
|
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
|
||
|
"{% elif message['role'] == 'assistant' %}"
|
||
|
"{{ ' ' + content.strip() + ' ' + eos_token }}"
|
||
|
"{% endif %}"
|
||
|
"{% endfor %}"
|
||
|
)
|
||
|
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
|
||
|
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
|
||
|
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
|
||
|
|
||
|
return template
|