171 lines
8.8 KiB
Python
171 lines
8.8 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018, Hao Tan, Mohit Bansal
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" LXMERT model configuration"""
|
||
|
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class LxmertConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`LxmertModel`] or a [`TFLxmertModel`]. It is used
|
||
|
to instantiate a LXMERT model according to the specified arguments, defining the model architecture. Instantiating
|
||
|
a configuration with the defaults will yield a similar configuration to that of the Lxmert
|
||
|
[unc-nlp/lxmert-base-uncased](https://huggingface.co/unc-nlp/lxmert-base-uncased) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the LXMERT model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`LxmertModel`] or [`TFLxmertModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
num_qa_labels (`int`, *optional*, defaults to 9500):
|
||
|
This represents the total number of different question answering (QA) labels there are. If using more than
|
||
|
one dataset with QA, the user will need to account for the total number of labels that all of the datasets
|
||
|
have in total.
|
||
|
num_object_labels (`int`, *optional*, defaults to 1600):
|
||
|
This represents the total number of semantically unique objects that lxmert will be able to classify a
|
||
|
pooled-object feature as belonging too.
|
||
|
num_attr_labels (`int`, *optional*, defaults to 400):
|
||
|
This represents the total number of semantically unique attributes that lxmert will be able to classify a
|
||
|
pooled-object feature as possessing.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
l_layers (`int`, *optional*, defaults to 9):
|
||
|
Number of hidden layers in the Transformer language encoder.
|
||
|
x_layers (`int`, *optional*, defaults to 5):
|
||
|
Number of hidden layers in the Transformer cross modality encoder.
|
||
|
r_layers (`int`, *optional*, defaults to 5):
|
||
|
Number of hidden layers in the Transformer visual encoder.
|
||
|
visual_feat_dim (`int`, *optional*, defaults to 2048):
|
||
|
This represents the last dimension of the pooled-object features used as input for the model, representing
|
||
|
the size of each object feature itself.
|
||
|
visual_pos_dim (`int`, *optional*, defaults to 4):
|
||
|
This represents the number of spacial features that are mixed into the visual features. The default is set
|
||
|
to 4 because most commonly this will represent the location of a bounding box. i.e., (x, y, width, height)
|
||
|
visual_loss_normalizer (`float`, *optional*, defaults to 6.67):
|
||
|
This represents the scaling factor in which each visual loss is multiplied by if during pretraining, one
|
||
|
decided to train with multiple vision-based loss objectives.
|
||
|
task_matched (`bool`, *optional*, defaults to `True`):
|
||
|
This task is used for sentence-image matching. If the sentence correctly describes the image the label will
|
||
|
be 1. If the sentence does not correctly describe the image, the label will be 0.
|
||
|
task_mask_lm (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add masked language modeling (as used in pretraining models such as BERT) to the loss
|
||
|
objective.
|
||
|
task_obj_predict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add object prediction, attribute prediction and feature regression to the loss objective.
|
||
|
task_qa (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to add the question-answering loss to the objective
|
||
|
visual_obj_loss (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to calculate the object-prediction loss objective
|
||
|
visual_attr_loss (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to calculate the attribute-prediction loss objective
|
||
|
visual_feat_loss (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to calculate the feature-regression loss objective
|
||
|
"""
|
||
|
|
||
|
model_type = "lxmert"
|
||
|
attribute_map = {}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=768,
|
||
|
num_attention_heads=12,
|
||
|
num_qa_labels=9500,
|
||
|
num_object_labels=1600,
|
||
|
num_attr_labels=400,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
l_layers=9,
|
||
|
x_layers=5,
|
||
|
r_layers=5,
|
||
|
visual_feat_dim=2048,
|
||
|
visual_pos_dim=4,
|
||
|
visual_loss_normalizer=6.67,
|
||
|
task_matched=True,
|
||
|
task_mask_lm=True,
|
||
|
task_obj_predict=True,
|
||
|
task_qa=True,
|
||
|
visual_obj_loss=True,
|
||
|
visual_attr_loss=True,
|
||
|
visual_feat_loss=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.num_qa_labels = num_qa_labels
|
||
|
self.num_object_labels = num_object_labels
|
||
|
self.num_attr_labels = num_attr_labels
|
||
|
self.l_layers = l_layers
|
||
|
self.x_layers = x_layers
|
||
|
self.r_layers = r_layers
|
||
|
self.visual_feat_dim = visual_feat_dim
|
||
|
self.visual_pos_dim = visual_pos_dim
|
||
|
self.visual_loss_normalizer = visual_loss_normalizer
|
||
|
self.task_matched = task_matched
|
||
|
self.task_mask_lm = task_mask_lm
|
||
|
self.task_obj_predict = task_obj_predict
|
||
|
self.task_qa = task_qa
|
||
|
self.visual_obj_loss = visual_obj_loss
|
||
|
self.visual_attr_loss = visual_attr_loss
|
||
|
self.visual_feat_loss = visual_feat_loss
|
||
|
self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
|
||
|
super().__init__(**kwargs)
|