147 lines
6.2 KiB
Python
147 lines
6.2 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Processor class for MarkupLM.
|
||
|
"""
|
||
|
from typing import Optional, Union
|
||
|
|
||
|
from ...file_utils import TensorType
|
||
|
from ...processing_utils import ProcessorMixin
|
||
|
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
|
||
|
|
||
|
|
||
|
class MarkupLMProcessor(ProcessorMixin):
|
||
|
r"""
|
||
|
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
|
||
|
processor.
|
||
|
|
||
|
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
|
||
|
|
||
|
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
|
||
|
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
|
||
|
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
|
||
|
|
||
|
Args:
|
||
|
feature_extractor (`MarkupLMFeatureExtractor`):
|
||
|
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
|
||
|
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
|
||
|
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
|
||
|
parse_html (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
|
||
|
"""
|
||
|
|
||
|
feature_extractor_class = "MarkupLMFeatureExtractor"
|
||
|
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
|
||
|
parse_html = True
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
html_strings=None,
|
||
|
nodes=None,
|
||
|
xpaths=None,
|
||
|
node_labels=None,
|
||
|
questions=None,
|
||
|
add_special_tokens: bool = True,
|
||
|
padding: Union[bool, str, PaddingStrategy] = False,
|
||
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
||
|
max_length: Optional[int] = None,
|
||
|
stride: int = 0,
|
||
|
pad_to_multiple_of: Optional[int] = None,
|
||
|
return_token_type_ids: Optional[bool] = None,
|
||
|
return_attention_mask: Optional[bool] = None,
|
||
|
return_overflowing_tokens: bool = False,
|
||
|
return_special_tokens_mask: bool = False,
|
||
|
return_offsets_mapping: bool = False,
|
||
|
return_length: bool = False,
|
||
|
verbose: bool = True,
|
||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
||
|
**kwargs,
|
||
|
) -> BatchEncoding:
|
||
|
"""
|
||
|
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
|
||
|
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
|
||
|
returns the output.
|
||
|
|
||
|
Optionally, one can also provide a `text` argument which is passed along as first sequence.
|
||
|
|
||
|
Please refer to the docstring of the above two methods for more information.
|
||
|
"""
|
||
|
# first, create nodes and xpaths
|
||
|
if self.parse_html:
|
||
|
if html_strings is None:
|
||
|
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
|
||
|
|
||
|
if nodes is not None or xpaths is not None or node_labels is not None:
|
||
|
raise ValueError(
|
||
|
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
|
||
|
)
|
||
|
|
||
|
features = self.feature_extractor(html_strings)
|
||
|
nodes = features["nodes"]
|
||
|
xpaths = features["xpaths"]
|
||
|
else:
|
||
|
if html_strings is not None:
|
||
|
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
|
||
|
if nodes is None or xpaths is None:
|
||
|
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
|
||
|
|
||
|
# # second, apply the tokenizer
|
||
|
if questions is not None and self.parse_html:
|
||
|
if isinstance(questions, str):
|
||
|
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
|
||
|
|
||
|
encoded_inputs = self.tokenizer(
|
||
|
text=questions if questions is not None else nodes,
|
||
|
text_pair=nodes if questions is not None else None,
|
||
|
xpaths=xpaths,
|
||
|
node_labels=node_labels,
|
||
|
add_special_tokens=add_special_tokens,
|
||
|
padding=padding,
|
||
|
truncation=truncation,
|
||
|
max_length=max_length,
|
||
|
stride=stride,
|
||
|
pad_to_multiple_of=pad_to_multiple_of,
|
||
|
return_token_type_ids=return_token_type_ids,
|
||
|
return_attention_mask=return_attention_mask,
|
||
|
return_overflowing_tokens=return_overflowing_tokens,
|
||
|
return_special_tokens_mask=return_special_tokens_mask,
|
||
|
return_offsets_mapping=return_offsets_mapping,
|
||
|
return_length=return_length,
|
||
|
verbose=verbose,
|
||
|
return_tensors=return_tensors,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
return encoded_inputs
|
||
|
|
||
|
def batch_decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
|
||
|
to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
||
|
|
||
|
def decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
|
||
|
docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.decode(*args, **kwargs)
|
||
|
|
||
|
@property
|
||
|
def model_input_names(self):
|
||
|
tokenizer_input_names = self.tokenizer.model_input_names
|
||
|
return tokenizer_input_names
|