184 lines
8.1 KiB
Python
184 lines
8.1 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" MobileBERT model configuration"""
|
||
|
from collections import OrderedDict
|
||
|
from typing import Mapping
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class MobileBertConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`MobileBertModel`] or a [`TFMobileBertModel`]. It
|
||
|
is used to instantiate a MobileBERT model according to the specified arguments, defining the model architecture.
|
||
|
Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileBERT
|
||
|
[google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the MobileBERT model. Defines the number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`MobileBertModel`] or [`TFMobileBertModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 512):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 24):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 4):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 512):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_size (`int`, *optional*, defaults to 2):
|
||
|
The vocabulary size of the `token_type_ids` passed when calling [`MobileBertModel`] or
|
||
|
[`TFMobileBertModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
|
||
|
pad_token_id (`int`, *optional*, defaults to 0):
|
||
|
The ID of the token in the word embedding to use as padding.
|
||
|
embedding_size (`int`, *optional*, defaults to 128):
|
||
|
The dimension of the word embedding vectors.
|
||
|
trigram_input (`bool`, *optional*, defaults to `True`):
|
||
|
Use a convolution of trigram as input.
|
||
|
use_bottleneck (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use bottleneck in BERT.
|
||
|
intra_bottleneck_size (`int`, *optional*, defaults to 128):
|
||
|
Size of bottleneck layer output.
|
||
|
use_bottleneck_attention (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to use attention inputs from the bottleneck transformation.
|
||
|
key_query_shared_bottleneck (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use the same linear transformation for query&key in the bottleneck.
|
||
|
num_feedforward_networks (`int`, *optional*, defaults to 4):
|
||
|
Number of FFNs in a block.
|
||
|
normalization_type (`str`, *optional*, defaults to `"no_norm"`):
|
||
|
The normalization type in MobileBERT.
|
||
|
classifier_dropout (`float`, *optional*):
|
||
|
The dropout ratio for the classification head.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import MobileBertConfig, MobileBertModel
|
||
|
|
||
|
>>> # Initializing a MobileBERT configuration
|
||
|
>>> configuration = MobileBertConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration above
|
||
|
>>> model = MobileBertModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
model_type = "mobilebert"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=512,
|
||
|
num_hidden_layers=24,
|
||
|
num_attention_heads=4,
|
||
|
intermediate_size=512,
|
||
|
hidden_act="relu",
|
||
|
hidden_dropout_prob=0.0,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=512,
|
||
|
type_vocab_size=2,
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
pad_token_id=0,
|
||
|
embedding_size=128,
|
||
|
trigram_input=True,
|
||
|
use_bottleneck=True,
|
||
|
intra_bottleneck_size=128,
|
||
|
use_bottleneck_attention=False,
|
||
|
key_query_shared_bottleneck=True,
|
||
|
num_feedforward_networks=4,
|
||
|
normalization_type="no_norm",
|
||
|
classifier_activation=True,
|
||
|
classifier_dropout=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_size = type_vocab_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.embedding_size = embedding_size
|
||
|
self.trigram_input = trigram_input
|
||
|
self.use_bottleneck = use_bottleneck
|
||
|
self.intra_bottleneck_size = intra_bottleneck_size
|
||
|
self.use_bottleneck_attention = use_bottleneck_attention
|
||
|
self.key_query_shared_bottleneck = key_query_shared_bottleneck
|
||
|
self.num_feedforward_networks = num_feedforward_networks
|
||
|
self.normalization_type = normalization_type
|
||
|
self.classifier_activation = classifier_activation
|
||
|
|
||
|
if self.use_bottleneck:
|
||
|
self.true_hidden_size = intra_bottleneck_size
|
||
|
else:
|
||
|
self.true_hidden_size = hidden_size
|
||
|
|
||
|
self.classifier_dropout = classifier_dropout
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.configuration_bert.BertOnnxConfig with Bert->MobileBert
|
||
|
class MobileBertOnnxConfig(OnnxConfig):
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
if self.task == "multiple-choice":
|
||
|
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
||
|
else:
|
||
|
dynamic_axis = {0: "batch", 1: "sequence"}
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("input_ids", dynamic_axis),
|
||
|
("attention_mask", dynamic_axis),
|
||
|
("token_type_ids", dynamic_axis),
|
||
|
]
|
||
|
)
|