247 lines
11 KiB
Python
247 lines
11 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 HuggingFace Inc. team and MosaicML NLP team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Mpt configuration"""
|
||
|
from typing import TYPE_CHECKING, Optional, Union
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
pass
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import MPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class MptAttentionConfig(PretrainedConfig):
|
||
|
"""
|
||
|
This is the configuration class to store the configuration of a [`MptAttention`] class. It is used to instantiate
|
||
|
attention layers according to the specified arguments, defining the layers architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the MPT
|
||
|
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) architecture. Most of the arguments are kept for backward
|
||
|
compatibility with previous MPT models that are hosted on the Hub (previously with `trust_remote_code=True`).
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
attn_type (`str`, *optional*, defaults to `"multihead_attention"`):
|
||
|
type of attention to use. Options: `"multihead_attention"`, `"multiquery_attention"`.
|
||
|
attn_pdrop (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for the attention layers.
|
||
|
attn_impl (`str`, *optional*, defaults to `"torch"`):
|
||
|
The attention implementation to use. One of `"torch"`, `"flash"`, or `"triton"`.
|
||
|
clip_qkv (`float`, *optional*):
|
||
|
If not `None`, clip the queries, keys, and values in the attention layer to this value.
|
||
|
softmax_scale (`float`, *optional*, defaults to `None`):
|
||
|
If not `None`, scale the softmax in the attention layer by this value. If `None`, will default to
|
||
|
`1/sqrt(hidden_size)`.
|
||
|
prefix_lm (`bool`, *optional*, defaults to `False`)):
|
||
|
Whether the model should operate as a Prefix LM. This requires passing an extra `prefix_mask` argument
|
||
|
which indicates which tokens belong to the prefix. Tokens in the prefix can attend to one another
|
||
|
bi-directionally. Tokens outside the prefix use causal attention.
|
||
|
qk_ln (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply layer normalization to the queries and keys in the attention layer.
|
||
|
attn_uses_sequence_id (`bool`, *optional*, defaults to `False`)):
|
||
|
Whether to restrict attention to tokens that have the same token_type_ids. When the model is in `train`
|
||
|
mode, this requires passing an extra *token_type_ids* argument which indicates which sub-sequence each
|
||
|
token belongs to. Defaults to `False` meaning any provided *token_type_ids* will be ignored.
|
||
|
alibi (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to use the alibi bias instead of positional embedding.
|
||
|
alibi_bias_max (`int`, *optional*, defaults to 8):
|
||
|
The maximum value of the alibi bias.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
attn_type="multihead_attention",
|
||
|
attn_pdrop=0,
|
||
|
attn_impl="torch",
|
||
|
clip_qkv=None,
|
||
|
softmax_scale=None,
|
||
|
prefix_lm=False,
|
||
|
qk_ln=False,
|
||
|
attn_uses_sequence_id=False,
|
||
|
alibi=True,
|
||
|
alibi_bias_max=8,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.attn_type = attn_type
|
||
|
self.attn_pdrop = attn_pdrop
|
||
|
self.attn_impl = attn_impl
|
||
|
self.clip_qkv = clip_qkv
|
||
|
self.softmax_scale = softmax_scale
|
||
|
self.prefix_lm = prefix_lm
|
||
|
self.attn_uses_sequence_id = attn_uses_sequence_id
|
||
|
self.alibi = alibi
|
||
|
self.qk_ln = qk_ln
|
||
|
self.alibi_bias_max = alibi_bias_max
|
||
|
|
||
|
if attn_type not in ["multihead_attention", "multiquery_attention"]:
|
||
|
raise ValueError(
|
||
|
f"`attn_type` has to be either `multihead_attention` or `multiquery_attention`. Received: {attn_type}"
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig":
|
||
|
cls._set_token_in_kwargs(kwargs)
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
if config_dict.get("model_type") == "mpt":
|
||
|
config_dict = config_dict["attn_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class MptConfig(PretrainedConfig):
|
||
|
"""
|
||
|
This is the configuration class to store the configuration of a [`MptModel`]. It is used to instantiate a Mpt model
|
||
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to the Mpt-7b architecture
|
||
|
[mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b).
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
d_model (`int`, *optional*, defaults to 2048):
|
||
|
Dimensionality of the embeddings and hidden states.
|
||
|
n_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
n_layers (`int`, *optional*, defaults to 24):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
expansion_ratio (`int`, *optional*, defaults to 4):
|
||
|
The ratio of the up/down scale in the MLP.
|
||
|
max_seq_len (`int`, *optional*, defaults to 2048):
|
||
|
The maximum sequence length of the model.
|
||
|
vocab_size (`int`, *optional*, defaults to 50368):
|
||
|
Vocabulary size of the Mpt model. Defines the maximum number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`MptModel`]. Check [this
|
||
|
discussion](https://huggingface.co/bigscience/mpt/discussions/120#633d28389addb8530b406c2a) on how the
|
||
|
`vocab_size` has been defined.
|
||
|
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability applied to the attention output before combining with residual.
|
||
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||
|
The epsilon to use in the layer normalization layers.
|
||
|
emb_pdrop (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for the embedding layer.
|
||
|
learned_pos_emb (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use learned positional embeddings.
|
||
|
attn_config (`dict`, *optional*):
|
||
|
A dictionary used to configure the model's attention module.
|
||
|
init_device (`str`, *optional*, defaults to `"cpu"`):
|
||
|
The device to use for parameter initialization. Defined for backward compatibility
|
||
|
logit_scale (`float`, *optional*):
|
||
|
If not None, scale the logits by this value.
|
||
|
no_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to use bias in all linear layers.
|
||
|
verbose (`int`, *optional*, defaults to 0):
|
||
|
The verbosity level to use for logging. Used in the previous versions of MPT models for logging. This
|
||
|
argument is deprecated.
|
||
|
embedding_fraction (`float`, *optional*, defaults to 1.0):
|
||
|
The fraction to scale the gradients of the embedding layer by.
|
||
|
norm_type (`str`, *optional*, defaults to `"low_precision_layernorm"`):
|
||
|
Type of layer norm to use. All MPT models uses the same layer norm implementation. Defined for backward
|
||
|
compatibility.
|
||
|
use_cache (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import MptConfig, MptModel
|
||
|
|
||
|
>>> # Initializing a Mpt configuration
|
||
|
>>> configuration = MptConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the configuration
|
||
|
>>> model = MptModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
model_type = "mpt"
|
||
|
attribute_map = {
|
||
|
"num_attention_heads": "n_heads",
|
||
|
"hidden_size": "d_model",
|
||
|
"num_hidden_layers": "n_layers",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
d_model: int = 2048,
|
||
|
n_heads: int = 16,
|
||
|
n_layers: int = 24,
|
||
|
expansion_ratio: int = 4,
|
||
|
max_seq_len: int = 2048,
|
||
|
vocab_size: int = 50368,
|
||
|
resid_pdrop: float = 0.0,
|
||
|
layer_norm_epsilon: float = 1e-5,
|
||
|
emb_pdrop: float = 0.0,
|
||
|
learned_pos_emb: bool = True,
|
||
|
attn_config: MptAttentionConfig = None,
|
||
|
init_device: str = "cpu",
|
||
|
logit_scale: Optional[Union[float, str]] = None,
|
||
|
no_bias: bool = True,
|
||
|
verbose: int = 0,
|
||
|
embedding_fraction: float = 1.0,
|
||
|
norm_type: str = "low_precision_layernorm",
|
||
|
use_cache: bool = False,
|
||
|
initializer_range=0.02,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if attn_config is None:
|
||
|
self.attn_config = MptAttentionConfig()
|
||
|
elif isinstance(attn_config, dict):
|
||
|
self.attn_config = MptAttentionConfig(**attn_config)
|
||
|
else:
|
||
|
self.attn_config = attn_config
|
||
|
self.d_model = d_model
|
||
|
self.n_heads = n_heads
|
||
|
self.n_layers = n_layers
|
||
|
self.expansion_ratio = expansion_ratio
|
||
|
self.max_seq_len = max_seq_len
|
||
|
self.vocab_size = vocab_size
|
||
|
self.resid_pdrop = resid_pdrop
|
||
|
self.emb_pdrop = emb_pdrop
|
||
|
self.learned_pos_emb = learned_pos_emb
|
||
|
self.init_device = init_device
|
||
|
self.logit_scale = logit_scale
|
||
|
self.no_bias = no_bias
|
||
|
self.verbose = verbose
|
||
|
self.embedding_fraction = embedding_fraction
|
||
|
self.norm_type = norm_type
|
||
|
self.layer_norm_epsilon = layer_norm_epsilon
|
||
|
self.use_cache = use_cache
|
||
|
self.initializer_range = initializer_range
|
||
|
super().__init__(**kwargs)
|