161 lines
6.6 KiB
Python
161 lines
6.6 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Processor class for Nougat.
|
||
|
"""
|
||
|
|
||
|
from typing import Dict, List, Optional, Union
|
||
|
|
||
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput, TruncationStrategy
|
||
|
|
||
|
from ...processing_utils import ProcessorMixin
|
||
|
from ...utils import PaddingStrategy, TensorType
|
||
|
|
||
|
|
||
|
class NougatProcessor(ProcessorMixin):
|
||
|
r"""
|
||
|
Constructs a Nougat processor which wraps a Nougat image processor and a Nougat tokenizer into a single processor.
|
||
|
|
||
|
[`NougatProcessor`] offers all the functionalities of [`NougatImageProcessor`] and [`NougatTokenizerFast`]. See the
|
||
|
[`~NougatProcessor.__call__`] and [`~NougatProcessor.decode`] for more information.
|
||
|
|
||
|
Args:
|
||
|
image_processor ([`NougatImageProcessor`]):
|
||
|
An instance of [`NougatImageProcessor`]. The image processor is a required input.
|
||
|
tokenizer ([`NougatTokenizerFast`]):
|
||
|
An instance of [`NougatTokenizerFast`]. The tokenizer is a required input.
|
||
|
"""
|
||
|
|
||
|
attributes = ["image_processor", "tokenizer"]
|
||
|
image_processor_class = "AutoImageProcessor"
|
||
|
tokenizer_class = "AutoTokenizer"
|
||
|
|
||
|
def __init__(self, image_processor, tokenizer):
|
||
|
super().__init__(image_processor, tokenizer)
|
||
|
self.current_processor = self.image_processor
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
images=None,
|
||
|
text=None,
|
||
|
do_crop_margin: bool = None,
|
||
|
do_resize: bool = None,
|
||
|
size: Dict[str, int] = None,
|
||
|
resample: "PILImageResampling" = None, # noqa: F821
|
||
|
do_thumbnail: bool = None,
|
||
|
do_align_long_axis: bool = None,
|
||
|
do_pad: bool = None,
|
||
|
do_rescale: bool = None,
|
||
|
rescale_factor: Union[int, float] = None,
|
||
|
do_normalize: bool = None,
|
||
|
image_mean: Optional[Union[float, List[float]]] = None,
|
||
|
image_std: Optional[Union[float, List[float]]] = None,
|
||
|
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
||
|
input_data_format: Optional[Union[str, "ChannelDimension"]] = None, # noqa: F821
|
||
|
text_pair: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
||
|
text_target: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
||
|
text_pair_target: Optional[
|
||
|
Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]
|
||
|
] = None,
|
||
|
add_special_tokens: bool = True,
|
||
|
padding: Union[bool, str, PaddingStrategy] = False,
|
||
|
truncation: Union[bool, str, TruncationStrategy] = None,
|
||
|
max_length: Optional[int] = None,
|
||
|
stride: int = 0,
|
||
|
is_split_into_words: bool = False,
|
||
|
pad_to_multiple_of: Optional[int] = None,
|
||
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
||
|
return_token_type_ids: Optional[bool] = None,
|
||
|
return_attention_mask: Optional[bool] = None,
|
||
|
return_overflowing_tokens: bool = False,
|
||
|
return_special_tokens_mask: bool = False,
|
||
|
return_offsets_mapping: bool = False,
|
||
|
return_length: bool = False,
|
||
|
verbose: bool = True,
|
||
|
):
|
||
|
if images is None and text is None:
|
||
|
raise ValueError("You need to specify either an `images` or `text` input to process.")
|
||
|
|
||
|
if images is not None:
|
||
|
inputs = self.image_processor(
|
||
|
images,
|
||
|
do_crop_margin=do_crop_margin,
|
||
|
do_resize=do_resize,
|
||
|
size=size,
|
||
|
resample=resample,
|
||
|
do_thumbnail=do_thumbnail,
|
||
|
do_align_long_axis=do_align_long_axis,
|
||
|
do_pad=do_pad,
|
||
|
do_rescale=do_rescale,
|
||
|
rescale_factor=rescale_factor,
|
||
|
do_normalize=do_normalize,
|
||
|
image_mean=image_mean,
|
||
|
image_std=image_std,
|
||
|
return_tensors=return_tensors,
|
||
|
data_format=data_format,
|
||
|
input_data_format=input_data_format,
|
||
|
)
|
||
|
if text is not None:
|
||
|
encodings = self.tokenizer(
|
||
|
text,
|
||
|
text_pair=text_pair,
|
||
|
text_target=text_target,
|
||
|
text_pair_target=text_pair_target,
|
||
|
add_special_tokens=add_special_tokens,
|
||
|
padding=padding,
|
||
|
truncation=truncation,
|
||
|
max_length=max_length,
|
||
|
stride=stride,
|
||
|
is_split_into_words=is_split_into_words,
|
||
|
pad_to_multiple_of=pad_to_multiple_of,
|
||
|
return_tensors=return_tensors,
|
||
|
return_token_type_ids=return_token_type_ids,
|
||
|
return_attention_mask=return_attention_mask,
|
||
|
return_overflowing_tokens=return_overflowing_tokens,
|
||
|
return_special_tokens_mask=return_special_tokens_mask,
|
||
|
return_offsets_mapping=return_offsets_mapping,
|
||
|
return_length=return_length,
|
||
|
verbose=verbose,
|
||
|
)
|
||
|
|
||
|
if text is None:
|
||
|
return inputs
|
||
|
elif images is None:
|
||
|
return encodings
|
||
|
else:
|
||
|
inputs["labels"] = encodings["input_ids"]
|
||
|
return inputs
|
||
|
|
||
|
def batch_decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
|
||
|
to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.batch_decode(*args, **kwargs)
|
||
|
|
||
|
def decode(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
||
|
the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.decode(*args, **kwargs)
|
||
|
|
||
|
def post_process_generation(self, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to NougatTokenizer's [`~PreTrainedTokenizer.post_process_generation`].
|
||
|
Please refer to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.post_process_generation(*args, **kwargs)
|