ai-content-maker/.venv/Lib/site-packages/transformers/models/openai/modeling_openai.py

860 lines
37 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
import json
import math
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import gelu_new, silu
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_openai import OpenAIGPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openai-community/openai-gpt"
_CONFIG_FOR_DOC = "OpenAIGPTConfig"
from ..deprecated._archive_maps import OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
"""Load tf pre-trained weights in a pytorch model (from NumPy arrays here)"""
import re
import numpy as np
if ".ckpt" in openai_checkpoint_folder_path:
openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)
logger.info(f"Loading weights from {openai_checkpoint_folder_path}")
with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle:
names = json.load(names_handle)
with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle:
shapes = json.load(shapes_handle)
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# This was used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
# Check that the token and position embeddings weight dimensions map those of the init parameters.
if model.tokens_embed.weight.shape != init_params[1].shape:
raise ValueError(
f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:"
f" {init_params[1].shape}"
)
if model.positions_embed.weight.shape != init_params[0].shape:
raise ValueError(
f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:"
f" {init_params[0].shape}"
)
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
if name[-2:] != ":0":
raise ValueError(f"Layer {name} does not end with :0")
name = name[:-2]
name = name.split("/")
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "w":
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
# Ensure that the pointer and array have compatible shapes.
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu}
class Attention(nn.Module):
def __init__(self, nx, n_positions, config, scale=False):
super().__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implementation]
if n_state % config.n_head != 0:
raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}")
self.register_buffer(
"bias",
torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions),
persistent=False,
)
self.n_head = config.n_head
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, nx)
self.c_proj = Conv1D(n_state, nx)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_head, self.split_size // self.n_head, self.pruned_heads
)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
self.n_head = self.n_head - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights
# XD: self.b may be larger than w, so we need to crop it
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
w = w * b + -1e4 * (1 - b)
if attention_mask is not None:
# Apply the attention mask
w = w + attention_mask
w = nn.functional.softmax(w, dim=-1)
w = self.attn_dropout(w)
# Mask heads if we want to
if head_mask is not None:
w = w * head_mask
outputs = [torch.matmul(w, v)]
if output_attentions:
outputs.append(w)
return outputs
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions)
a = attn_outputs[0]
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
outputs = [a] + attn_outputs[1:]
return outputs # a, (attentions)
class MLP(nn.Module):
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
super().__init__()
nx = config.n_embd
self.c_fc = Conv1D(n_state, nx)
self.c_proj = Conv1D(nx, n_state)
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
def __init__(self, n_positions, config, scale=False):
super().__init__()
nx = config.n_embd
self.attn = Attention(nx, n_positions, config, scale)
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
self.mlp = MLP(4 * nx, config)
self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False):
attn_outputs = self.attn(
x,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
a = attn_outputs[0]
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
outputs = [h] + attn_outputs[1:]
return outputs
class OpenAIGPTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = OpenAIGPTConfig
load_tf_weights = load_tf_weights_in_openai_gpt
base_model_prefix = "transformer"
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class OpenAIGPTDoubleHeadsModelOutput(ModelOutput):
"""
Base class for outputs of models predicting if two sentences are consecutive or not.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
Multiple choice classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mc_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
mc_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
OPENAI_GPT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
OPENAI_GPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)])
self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.tokens_embed
def set_input_embeddings(self, new_embeddings):
self.tokens_embed = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
"""
for layer, heads in heads_to_prune.items():
self.h[layer].attn.prune_heads(heads)
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if position_ids is None:
# Code is different from when we had a single embedding matrix from position and token embeddings
position_ids = self.position_ids[None, : input_shape[-1]]
# Attention mask.
if attention_mask is not None:
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
else:
token_type_embeds = 0
hidden_states = inputs_embeds + position_embeds + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions)
hidden_states = outputs[0]
if output_attentions:
all_attentions = all_attentions + (outputs[1],)
hidden_states = hidden_states.view(*output_shape)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss,
logits=lm_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]:
return {"input_ids": input_ids}
@add_start_docstrings(
"""
OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
input embeddings, the classification head takes as input the input of a specified classification token index in the
input sequence).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 1
self.transformer = OpenAIGPTModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.multiple_choice_head = SequenceSummary(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
mc_token_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
mc_labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]:
r"""
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
1]`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are
ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
Return:
Examples:
```python
>>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt")
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt")
>>> tokenizer.add_special_tokens(
... {"cls_token": "[CLS]"}
... ) # Add a [CLS] to the vocabulary (we should train it also!)
>>> model.resize_token_embeddings(len(tokenizer))
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices
>>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
>>> lm_logits = outputs.logits
>>> mc_logits = outputs.mc_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
lm_loss, mc_loss = None, None
if mc_labels is not None:
loss_fct = CrossEntropyLoss()
mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
if labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits, mc_logits) + transformer_outputs[1:]
if mc_loss is not None:
output = (mc_loss,) + output
return ((lm_loss,) + output) if lm_loss is not None else output
return OpenAIGPTDoubleHeadsModelOutput(
loss=lm_loss,
mc_loss=mc_loss,
logits=lm_logits,
mc_logits=mc_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer).
[`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal
models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the
last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding
token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since
it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
the last value in each row of the batch).
""",
OPENAI_GPT_START_DOCSTRING,
)
class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = OpenAIGPTModel(config)
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
# Ensure the batch size is > 1 if there is no padding.
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[range(batch_size), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=pooled_logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)