143 lines
6.5 KiB
Python
143 lines
6.5 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" OPT model configuration"""
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class OPTConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
|
||
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the OPT
|
||
|
[facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 50272):
|
||
|
Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`OPTModel`]
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of decoder layers.
|
||
|
ffn_dim (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
do_layer_norm_before (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to perform layer normalization before the attention block.
|
||
|
word_embed_proj_dim (`int`, *optional*):
|
||
|
`word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
|
||
|
`hidden_size`.
|
||
|
dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
layerdrop (`float`, *optional*, defaults to 0.0):
|
||
|
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
|
||
|
details.
|
||
|
init_std (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
enable_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not if the linear layers in the attention blocks should use the bias term.
|
||
|
layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not if the layer norms should have learnable parameters.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import OPTConfig, OPTModel
|
||
|
|
||
|
>>> # Initializing a OPT facebook/opt-large style configuration
|
||
|
>>> configuration = OPTConfig()
|
||
|
|
||
|
>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
|
||
|
>>> model = OPTModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "opt"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=50272,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
ffn_dim=3072,
|
||
|
max_position_embeddings=2048,
|
||
|
do_layer_norm_before=True,
|
||
|
_remove_final_layer_norm=False,
|
||
|
word_embed_proj_dim=None,
|
||
|
dropout=0.1,
|
||
|
attention_dropout=0.0,
|
||
|
num_attention_heads=12,
|
||
|
activation_function="relu",
|
||
|
layerdrop=0.0,
|
||
|
init_std=0.02,
|
||
|
use_cache=True,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=2,
|
||
|
eos_token_id=2,
|
||
|
enable_bias=True,
|
||
|
layer_norm_elementwise_affine=True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
self.vocab_size = vocab_size
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
|
||
|
self.ffn_dim = ffn_dim
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.dropout = dropout
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_function = activation_function
|
||
|
self.init_std = init_std
|
||
|
self.layerdrop = layerdrop
|
||
|
self.use_cache = use_cache
|
||
|
self.do_layer_norm_before = do_layer_norm_before
|
||
|
# We keep these variables at `True` for backward compatibility.
|
||
|
self.enable_bias = enable_bias
|
||
|
self.layer_norm_elementwise_affine = layer_norm_elementwise_affine
|
||
|
|
||
|
# Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
|
||
|
# with checkpoints that have been fine-tuned before transformers v4.20.1
|
||
|
# see https://github.com/facebookresearch/metaseq/pull/164
|
||
|
self._remove_final_layer_norm = _remove_final_layer_norm
|