181 lines
8.8 KiB
Python
181 lines
8.8 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" ProphetNet model configuration"""
|
||
|
|
||
|
from typing import Callable, Optional, Union
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class ProphetNetConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a
|
||
|
ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a
|
||
|
configuration with the defaults will yield a similar configuration to that of the ProphetNet
|
||
|
[microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
activation_dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for activations inside the fully connected layer.
|
||
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by
|
||
|
the `inputs_ids` passed when calling [`ProphetNetModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 1024):
|
||
|
Dimensionality of the layers and the pooler layer.
|
||
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
||
|
num_encoder_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of encoder layers.
|
||
|
num_encoder_attention_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
||
|
Dimensionality of the `intermediate` (often named feed-forward) layer in decoder.
|
||
|
num_decoder_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of decoder layers.
|
||
|
num_decoder_attention_heads (`int`, *optional*, defaults to 16):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
dropout (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 512):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
init_std (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
add_cross_attention (`bool`, *optional*, defaults to `True`):
|
||
|
Whether cross-attention layers should be added to the model.
|
||
|
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
|
||
|
Whether this is an encoder/decoder model.
|
||
|
pad_token_id (`int`, *optional*, defaults to 1)
|
||
|
Padding token id.
|
||
|
bos_token_id (`int`, *optional*, defaults to 0)
|
||
|
Beginning of stream token id.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2)
|
||
|
End of stream token id.
|
||
|
ngram (`int`, *optional*, defaults to 2)
|
||
|
Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first
|
||
|
token.
|
||
|
num_buckets (`int`, *optional*, defaults to 32)
|
||
|
The number of buckets to use for each attention layer. This is for relative position calculation. See the
|
||
|
[T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
|
||
|
relative_max_distance (`int`, *optional*, defaults to 128)
|
||
|
Relative distances greater than this number will be put into the last same bucket. This is for relative
|
||
|
position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details.
|
||
|
disable_ngram_loss (`bool`, *optional*, defaults to `False`):
|
||
|
Whether be trained predicting only the next first token.
|
||
|
eps (`float`, *optional*, defaults to 0.0):
|
||
|
Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label
|
||
|
smoothing is performed.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
||
|
"""
|
||
|
|
||
|
model_type = "prophetnet"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
attribute_map = {
|
||
|
"num_attention_heads": "num_encoder_attention_heads",
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
activation_dropout: Optional[float] = 0.1,
|
||
|
activation_function: Optional[Union[str, Callable]] = "gelu",
|
||
|
vocab_size: Optional[int] = 30522,
|
||
|
hidden_size: Optional[int] = 1024,
|
||
|
encoder_ffn_dim: Optional[int] = 4096,
|
||
|
num_encoder_layers: Optional[int] = 12,
|
||
|
num_encoder_attention_heads: Optional[int] = 16,
|
||
|
decoder_ffn_dim: Optional[int] = 4096,
|
||
|
num_decoder_layers: Optional[int] = 12,
|
||
|
num_decoder_attention_heads: Optional[int] = 16,
|
||
|
attention_dropout: Optional[float] = 0.1,
|
||
|
dropout: Optional[float] = 0.1,
|
||
|
max_position_embeddings: Optional[int] = 512,
|
||
|
init_std: Optional[float] = 0.02,
|
||
|
is_encoder_decoder: Optional[bool] = True,
|
||
|
add_cross_attention: Optional[bool] = True,
|
||
|
decoder_start_token_id: Optional[int] = 0,
|
||
|
ngram: Optional[int] = 2,
|
||
|
num_buckets: Optional[int] = 32,
|
||
|
relative_max_distance: Optional[int] = 128,
|
||
|
disable_ngram_loss: Optional[bool] = False,
|
||
|
eps: Optional[float] = 0.0,
|
||
|
use_cache: Optional[bool] = True,
|
||
|
pad_token_id: Optional[int] = 0,
|
||
|
bos_token_id: Optional[int] = 1,
|
||
|
eos_token_id: Optional[int] = 2,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.encoder_ffn_dim = encoder_ffn_dim
|
||
|
self.num_encoder_layers = num_encoder_layers
|
||
|
self.num_encoder_attention_heads = num_encoder_attention_heads
|
||
|
self.decoder_ffn_dim = decoder_ffn_dim
|
||
|
self.num_decoder_layers = num_decoder_layers
|
||
|
self.num_decoder_attention_heads = num_decoder_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.init_std = init_std # Normal(0, this parameter)
|
||
|
self.activation_function = activation_function
|
||
|
|
||
|
# parameters for prophetnet
|
||
|
self.ngram = ngram
|
||
|
self.num_buckets = num_buckets
|
||
|
self.relative_max_distance = relative_max_distance
|
||
|
self.disable_ngram_loss = disable_ngram_loss
|
||
|
self.eps = eps
|
||
|
|
||
|
# 3 Types of Dropout
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.activation_dropout = activation_dropout
|
||
|
self.dropout = dropout
|
||
|
|
||
|
self.use_cache = use_cache
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
is_encoder_decoder=is_encoder_decoder,
|
||
|
add_cross_attention=add_cross_attention,
|
||
|
decoder_start_token_id=decoder_start_token_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def num_hidden_layers(self) -> int:
|
||
|
return self.num_encoder_layers + self.num_decoder_layers
|
||
|
|
||
|
@num_hidden_layers.setter
|
||
|
def num_hidden_layers(self, value):
|
||
|
raise NotImplementedError(
|
||
|
"This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"
|
||
|
" `num_decoder_layers`."
|
||
|
)
|