163 lines
6.9 KiB
Python
163 lines
6.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
|
||
|
# Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team.
|
||
|
# All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Pvt model configuration"""
|
||
|
|
||
|
from collections import OrderedDict
|
||
|
from typing import Callable, List, Mapping
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...onnx import OnnxConfig
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import PVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class PvtConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`PvtModel`]. It is used to instantiate an Pvt
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the Pvt
|
||
|
[Xrenya/pvt-tiny-224](https://huggingface.co/Xrenya/pvt-tiny-224) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
image_size (`int`, *optional*, defaults to 224):
|
||
|
The input image size
|
||
|
num_channels (`int`, *optional*, defaults to 3):
|
||
|
The number of input channels.
|
||
|
num_encoder_blocks (`int`, *optional*, defaults to 4):
|
||
|
The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
|
||
|
depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
|
||
|
The number of layers in each encoder block.
|
||
|
sequence_reduction_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
|
||
|
Sequence reduction ratios in each encoder block.
|
||
|
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
|
||
|
Dimension of each of the encoder blocks.
|
||
|
patch_sizes (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
|
||
|
Patch size before each encoder block.
|
||
|
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
|
||
|
Stride before each encoder block.
|
||
|
num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
|
||
|
Number of attention heads for each attention layer in each block of the Transformer encoder.
|
||
|
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
|
||
|
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
|
||
|
encoder blocks.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
qkv_bias (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not a learnable bias should be added to the queries, keys and values.
|
||
|
num_labels ('int', *optional*, defaults to 1000):
|
||
|
The number of classes.
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import PvtModel, PvtConfig
|
||
|
|
||
|
>>> # Initializing a PVT Xrenya/pvt-tiny-224 style configuration
|
||
|
>>> configuration = PvtConfig()
|
||
|
|
||
|
>>> # Initializing a model from the Xrenya/pvt-tiny-224 style configuration
|
||
|
>>> model = PvtModel(configuration)
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "pvt"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_size: int = 224,
|
||
|
num_channels: int = 3,
|
||
|
num_encoder_blocks: int = 4,
|
||
|
depths: List[int] = [2, 2, 2, 2],
|
||
|
sequence_reduction_ratios: List[int] = [8, 4, 2, 1],
|
||
|
hidden_sizes: List[int] = [64, 128, 320, 512],
|
||
|
patch_sizes: List[int] = [4, 2, 2, 2],
|
||
|
strides: List[int] = [4, 2, 2, 2],
|
||
|
num_attention_heads: List[int] = [1, 2, 5, 8],
|
||
|
mlp_ratios: List[int] = [8, 8, 4, 4],
|
||
|
hidden_act: Mapping[str, Callable] = "gelu",
|
||
|
hidden_dropout_prob: float = 0.0,
|
||
|
attention_probs_dropout_prob: float = 0.0,
|
||
|
initializer_range: float = 0.02,
|
||
|
drop_path_rate: float = 0.0,
|
||
|
layer_norm_eps: float = 1e-6,
|
||
|
qkv_bias: bool = True,
|
||
|
num_labels: int = 1000,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.image_size = image_size
|
||
|
self.num_channels = num_channels
|
||
|
self.num_encoder_blocks = num_encoder_blocks
|
||
|
self.depths = depths
|
||
|
self.sequence_reduction_ratios = sequence_reduction_ratios
|
||
|
self.hidden_sizes = hidden_sizes
|
||
|
self.patch_sizes = patch_sizes
|
||
|
self.strides = strides
|
||
|
self.mlp_ratios = mlp_ratios
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.initializer_range = initializer_range
|
||
|
self.drop_path_rate = drop_path_rate
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.num_labels = num_labels
|
||
|
self.qkv_bias = qkv_bias
|
||
|
|
||
|
|
||
|
class PvtOnnxConfig(OnnxConfig):
|
||
|
torch_onnx_minimum_version = version.parse("1.11")
|
||
|
|
||
|
@property
|
||
|
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
||
|
return OrderedDict(
|
||
|
[
|
||
|
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def atol_for_validation(self) -> float:
|
||
|
return 1e-4
|
||
|
|
||
|
@property
|
||
|
def default_onnx_opset(self) -> int:
|
||
|
return 12
|