121 lines
4.5 KiB
Python
121 lines
4.5 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization classes for RAG."""
|
||
|
import os
|
||
|
import warnings
|
||
|
from typing import List, Optional
|
||
|
|
||
|
from ...tokenization_utils_base import BatchEncoding
|
||
|
from ...utils import logging
|
||
|
from .configuration_rag import RagConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class RagTokenizer:
|
||
|
def __init__(self, question_encoder, generator):
|
||
|
self.question_encoder = question_encoder
|
||
|
self.generator = generator
|
||
|
self.current_tokenizer = self.question_encoder
|
||
|
|
||
|
def save_pretrained(self, save_directory):
|
||
|
if os.path.isfile(save_directory):
|
||
|
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
|
||
|
os.makedirs(save_directory, exist_ok=True)
|
||
|
question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer")
|
||
|
generator_path = os.path.join(save_directory, "generator_tokenizer")
|
||
|
self.question_encoder.save_pretrained(question_encoder_path)
|
||
|
self.generator.save_pretrained(generator_path)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
||
|
# dynamically import AutoTokenizer
|
||
|
from ..auto.tokenization_auto import AutoTokenizer
|
||
|
|
||
|
config = kwargs.pop("config", None)
|
||
|
|
||
|
if config is None:
|
||
|
config = RagConfig.from_pretrained(pretrained_model_name_or_path)
|
||
|
|
||
|
question_encoder = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer"
|
||
|
)
|
||
|
generator = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer"
|
||
|
)
|
||
|
return cls(question_encoder=question_encoder, generator=generator)
|
||
|
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
return self.current_tokenizer(*args, **kwargs)
|
||
|
|
||
|
def batch_decode(self, *args, **kwargs):
|
||
|
return self.generator.batch_decode(*args, **kwargs)
|
||
|
|
||
|
def decode(self, *args, **kwargs):
|
||
|
return self.generator.decode(*args, **kwargs)
|
||
|
|
||
|
def _switch_to_input_mode(self):
|
||
|
self.current_tokenizer = self.question_encoder
|
||
|
|
||
|
def _switch_to_target_mode(self):
|
||
|
self.current_tokenizer = self.generator
|
||
|
|
||
|
def prepare_seq2seq_batch(
|
||
|
self,
|
||
|
src_texts: List[str],
|
||
|
tgt_texts: Optional[List[str]] = None,
|
||
|
max_length: Optional[int] = None,
|
||
|
max_target_length: Optional[int] = None,
|
||
|
padding: str = "longest",
|
||
|
return_tensors: str = None,
|
||
|
truncation: bool = True,
|
||
|
**kwargs,
|
||
|
) -> BatchEncoding:
|
||
|
warnings.warn(
|
||
|
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
|
||
|
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
|
||
|
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
|
||
|
"details",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if max_length is None:
|
||
|
max_length = self.current_tokenizer.model_max_length
|
||
|
model_inputs = self(
|
||
|
src_texts,
|
||
|
add_special_tokens=True,
|
||
|
return_tensors=return_tensors,
|
||
|
max_length=max_length,
|
||
|
padding=padding,
|
||
|
truncation=truncation,
|
||
|
**kwargs,
|
||
|
)
|
||
|
if tgt_texts is None:
|
||
|
return model_inputs
|
||
|
# Process tgt_texts
|
||
|
if max_target_length is None:
|
||
|
max_target_length = self.current_tokenizer.model_max_length
|
||
|
labels = self(
|
||
|
text_target=tgt_texts,
|
||
|
add_special_tokens=True,
|
||
|
return_tensors=return_tensors,
|
||
|
padding=padding,
|
||
|
max_length=max_target_length,
|
||
|
truncation=truncation,
|
||
|
**kwargs,
|
||
|
)
|
||
|
model_inputs["labels"] = labels["input_ids"]
|
||
|
return model_inputs
|