ai-content-maker/.venv/Lib/site-packages/transformers/models/realm/configuration_realm.py

170 lines
7.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2022 The REALM authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" REALM model configuration."""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class RealmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of
1. [`RealmEmbedder`]
2. [`RealmScorer`]
3. [`RealmKnowledgeAugEncoder`]
4. [`RealmRetriever`]
5. [`RealmReader`]
6. [`RealmForOpenQA`]
It is used to instantiate an REALM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM
[google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or
[`RealmReader`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
retriever_proj_size (`int`, *optional*, defaults to 128):
Dimension of the retriever(embedder) projection.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_candidates (`int`, *optional*, defaults to 8):
Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`],
[`RealmKnowledgeAugEncoder`], or [`RealmReader`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
span_hidden_size (`int`, *optional*, defaults to 256):
Dimension of the reader's spans.
max_span_width (`int`, *optional*, defaults to 10):
Max span width of the reader.
reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3):
The epsilon used by the reader's layer normalization layers.
reader_beam_size (`int`, *optional*, defaults to 5):
Beam size of the reader.
reader_seq_len (`int`, *optional*, defaults to 288+32):
Maximum sequence length of the reader.
num_block_records (`int`, *optional*, defaults to 13353718):
Number of block records.
searcher_beam_size (`int`, *optional*, defaults to 5000):
Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as
*reader_beam_size*.
Example:
```python
>>> from transformers import RealmConfig, RealmEmbedder
>>> # Initializing a REALM realm-cc-news-pretrained-* style configuration
>>> configuration = RealmConfig()
>>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration
>>> model = RealmEmbedder(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "realm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
retriever_proj_size=128,
num_hidden_layers=12,
num_attention_heads=12,
num_candidates=8,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
span_hidden_size=256,
max_span_width=10,
reader_layer_norm_eps=1e-3,
reader_beam_size=5,
reader_seq_len=320, # 288 + 32
num_block_records=13353718,
searcher_beam_size=5000,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
# Common config
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.retriever_proj_size = retriever_proj_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_candidates = num_candidates
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
# Reader config
self.span_hidden_size = span_hidden_size
self.max_span_width = max_span_width
self.reader_layer_norm_eps = reader_layer_norm_eps
self.reader_beam_size = reader_beam_size
self.reader_seq_len = reader_seq_len
# Retrieval config
self.num_block_records = num_block_records
self.searcher_beam_size = searcher_beam_size