863 lines
37 KiB
Python
863 lines
37 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch RWKV model."""
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from pathlib import Path
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
is_bitsandbytes_available,
|
||
|
is_ninja_available,
|
||
|
is_torch_cuda_available,
|
||
|
logging,
|
||
|
)
|
||
|
from .configuration_rwkv import RwkvConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-4-169m-pile"
|
||
|
_CONFIG_FOR_DOC = "RwkvConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import RWKV_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
rwkv_cuda_kernel = None
|
||
|
|
||
|
|
||
|
def load_wkv_cuda_kernel(context_length):
|
||
|
from torch.utils.cpp_extension import load as load_kernel
|
||
|
|
||
|
global rwkv_cuda_kernel
|
||
|
|
||
|
kernel_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "rwkv"
|
||
|
cuda_kernel_files = [kernel_folder / f for f in ["wkv_op.cpp", "wkv_cuda.cu", "wkv_cuda_bf16.cu"]]
|
||
|
|
||
|
# Only load the kernel if it's not been loaded yet or if we changed the context length
|
||
|
if rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == context_length:
|
||
|
return
|
||
|
|
||
|
logger.info(f"Loading CUDA kernel for RWKV at context length of {context_length}.")
|
||
|
|
||
|
flags = [
|
||
|
"-res-usage",
|
||
|
"--maxrregcount 60",
|
||
|
"--use_fast_math",
|
||
|
"-O3",
|
||
|
"-Xptxas -O3",
|
||
|
"--extra-device-vectorization",
|
||
|
f"-DTmax={context_length}",
|
||
|
]
|
||
|
rwkv_cuda_kernel = load_kernel(
|
||
|
name=f"wkv_{context_length}",
|
||
|
sources=cuda_kernel_files,
|
||
|
verbose=(logging.get_verbosity() == logging.DEBUG),
|
||
|
extra_cuda_cflags=flags,
|
||
|
)
|
||
|
rwkv_cuda_kernel.max_seq_length = context_length
|
||
|
|
||
|
|
||
|
class RwkvLinearAttention(torch.autograd.Function):
|
||
|
@staticmethod
|
||
|
def forward(ctx, time_decay, time_first, key, value, state=None, return_state=False):
|
||
|
batch_size, seq_len, hidden_size = key.size()
|
||
|
if seq_len > rwkv_cuda_kernel.max_seq_length:
|
||
|
raise ValueError(
|
||
|
f"Cannot process a batch with {seq_len} tokens at the same time, use a maximum of "
|
||
|
f"{rwkv_cuda_kernel.max_seq_length} with this model."
|
||
|
)
|
||
|
if batch_size * hidden_size % min(hidden_size, 32) != 0:
|
||
|
raise ValueError(
|
||
|
f"The product of batch size ({batch_size}) and hidden size ({hidden_size}) needs to be a round "
|
||
|
f"multiple of {min(hidden_size, 32)}."
|
||
|
)
|
||
|
|
||
|
ctx.input_dtype = key.dtype
|
||
|
|
||
|
if (
|
||
|
time_decay.device.type != "cuda"
|
||
|
or time_first.device.type != "cuda"
|
||
|
or key.device.type != "cuda"
|
||
|
or value.device.type != "cuda"
|
||
|
):
|
||
|
raise ValueError("Calling the CUDA kernel for wkv attention requires all tensors to be on CUDA devices.")
|
||
|
|
||
|
time_decay = -torch.exp(time_decay.float().contiguous())
|
||
|
if key.dtype == torch.float16:
|
||
|
time_first = time_first.float()
|
||
|
key = key.float()
|
||
|
value = value.float()
|
||
|
time_first = time_first.contiguous()
|
||
|
key = key.contiguous()
|
||
|
value = value.contiguous()
|
||
|
# The CUDA kernel will fill this tensor.
|
||
|
output = torch.empty_like(key, memory_format=torch.contiguous_format)
|
||
|
if return_state or state is not None:
|
||
|
if state is None:
|
||
|
state = torch.zeros(
|
||
|
batch_size,
|
||
|
hidden_size,
|
||
|
3,
|
||
|
dtype=torch.float32,
|
||
|
device=key.device,
|
||
|
memory_format=torch.contiguous_format,
|
||
|
)
|
||
|
state[:, :, 2] -= 1e38
|
||
|
else:
|
||
|
state = torch.cat([s.unsqueeze(2) for s in state], dim=2).contiguous()
|
||
|
if key.dtype == torch.bfloat16:
|
||
|
forward_func = rwkv_cuda_kernel.forward_with_state_bf16
|
||
|
else:
|
||
|
forward_func = rwkv_cuda_kernel.forward_with_state
|
||
|
forward_func(time_decay, time_first, key, value, output, state)
|
||
|
else:
|
||
|
forward_func = rwkv_cuda_kernel.forward_bf16 if key.dtype == torch.bfloat16 else rwkv_cuda_kernel.forward
|
||
|
forward_func(time_decay, time_first, key, value, output)
|
||
|
|
||
|
ctx.save_for_backward(time_decay, time_first, key, value, output)
|
||
|
|
||
|
if state is not None:
|
||
|
state = [s.squeeze(2) for s in torch.chunk(state, 3, dim=2)]
|
||
|
|
||
|
return output.to(ctx.input_dtype), state
|
||
|
|
||
|
@staticmethod
|
||
|
# g stands for grad
|
||
|
def backward(ctx, g_output, g_state=None):
|
||
|
input_dtype = ctx.input_dtype
|
||
|
|
||
|
time_decay, time_first, key, value, output = ctx.saved_tensors
|
||
|
# The CUDA kernel will fill those tensors.
|
||
|
g_time_decay = torch.empty_like(
|
||
|
time_decay,
|
||
|
memory_format=torch.contiguous_format,
|
||
|
dtype=torch.bfloat16 if input_dtype == torch.bfloat16 else torch.float32,
|
||
|
)
|
||
|
g_time_first = torch.empty_like(time_first, memory_format=torch.contiguous_format)
|
||
|
g_key = torch.empty_like(key, memory_format=torch.contiguous_format)
|
||
|
g_value = torch.empty_like(value, memory_format=torch.contiguous_format)
|
||
|
|
||
|
if input_dtype == torch.float16:
|
||
|
g_output = g_output.float()
|
||
|
backward_func = rwkv_cuda_kernel.backward_bf16 if input_dtype == torch.bfloat16 else rwkv_cuda_kernel.backward
|
||
|
backward_func(
|
||
|
time_decay,
|
||
|
time_first,
|
||
|
key,
|
||
|
value,
|
||
|
output,
|
||
|
g_output.contiguous(),
|
||
|
g_time_decay,
|
||
|
g_time_first,
|
||
|
g_key,
|
||
|
g_value,
|
||
|
)
|
||
|
|
||
|
return (
|
||
|
g_time_decay.to(input_dtype),
|
||
|
g_time_first.to(input_dtype),
|
||
|
g_key.to(input_dtype),
|
||
|
g_value.to(input_dtype),
|
||
|
None,
|
||
|
None,
|
||
|
)
|
||
|
|
||
|
|
||
|
def rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=None, return_state=False):
|
||
|
# For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed
|
||
|
# within a torch.no_grad.
|
||
|
_, seq_length, _ = key.size()
|
||
|
output = torch.zeros_like(key)
|
||
|
|
||
|
if state is None:
|
||
|
num_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
|
||
|
den_state = torch.zeros_like(key[:, 0], dtype=torch.float32)
|
||
|
max_state = torch.zeros_like(key[:, 0], dtype=torch.float32) - 1e38
|
||
|
else:
|
||
|
num_state, den_state, max_state = state
|
||
|
# For numerical stability
|
||
|
# real_numerator_state = num_state * torch.exp(max_state)
|
||
|
# real_denominator_state = den_state * torch.exp(max_state)
|
||
|
|
||
|
time_decay = -torch.exp(time_decay)
|
||
|
|
||
|
for current_index in range(seq_length):
|
||
|
current_key = key[:, current_index].float()
|
||
|
current_value = value[:, current_index]
|
||
|
|
||
|
# wkv computation at time t
|
||
|
max_for_output = torch.maximum(max_state, current_key + time_first)
|
||
|
e1 = torch.exp(max_state - max_for_output)
|
||
|
e2 = torch.exp(current_key + time_first - max_for_output)
|
||
|
numerator = e1 * num_state + e2 * current_value
|
||
|
denominator = e1 * den_state + e2
|
||
|
output[:, current_index] = (numerator / denominator).to(output.dtype)
|
||
|
|
||
|
# Update state for next iteration
|
||
|
max_for_state = torch.maximum(max_state + time_decay, current_key)
|
||
|
e1 = torch.exp(max_state + time_decay - max_for_state)
|
||
|
e2 = torch.exp(current_key - max_for_state)
|
||
|
num_state = e1 * num_state + e2 * current_value
|
||
|
den_state = e1 * den_state + e2
|
||
|
max_state = max_for_state
|
||
|
|
||
|
if return_state or state is not None:
|
||
|
state = [num_state, den_state, max_state]
|
||
|
|
||
|
return output, state
|
||
|
|
||
|
|
||
|
def rwkv_linear_attention(time_decay, time_first, key, value, state=None, return_state=False):
|
||
|
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, key, value])
|
||
|
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
|
||
|
# in this case).
|
||
|
one_token = key.size(1) == 1
|
||
|
if rwkv_cuda_kernel is None or no_cuda or one_token:
|
||
|
return rwkv_linear_attention_cpu(time_decay, time_first, key, value, state=state, return_state=return_state)
|
||
|
else:
|
||
|
return RwkvLinearAttention.apply(time_decay, time_first, key, value, state, return_state)
|
||
|
|
||
|
|
||
|
class RwkvSelfAttention(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
kernel_loaded = rwkv_cuda_kernel is not None and rwkv_cuda_kernel.max_seq_length == config.context_length
|
||
|
if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded:
|
||
|
try:
|
||
|
load_wkv_cuda_kernel(config.context_length)
|
||
|
except Exception:
|
||
|
logger.info("Could not load the custom CUDA kernel for RWKV attention.")
|
||
|
self.layer_id = layer_id
|
||
|
hidden_size = config.hidden_size
|
||
|
attention_hidden_size = (
|
||
|
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size
|
||
|
)
|
||
|
self.attention_hidden_size = attention_hidden_size
|
||
|
|
||
|
self.time_decay = nn.Parameter(torch.empty(attention_hidden_size))
|
||
|
self.time_first = nn.Parameter(torch.empty(attention_hidden_size))
|
||
|
|
||
|
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||
|
self.time_mix_value = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||
|
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||
|
|
||
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||
|
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||
|
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||
|
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
||
|
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
||
|
|
||
|
# TODO: maybe jit, otherwise move inside forward
|
||
|
def extract_key_value(self, hidden, state=None):
|
||
|
# Mix hidden with the previous timestep to produce key, value, receptance
|
||
|
if hidden.size(1) == 1 and state is not None:
|
||
|
shifted = state[1][:, :, self.layer_id]
|
||
|
else:
|
||
|
shifted = self.time_shift(hidden)
|
||
|
if state is not None:
|
||
|
shifted[:, 0] = state[1][:, :, self.layer_id]
|
||
|
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
||
|
value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value)
|
||
|
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
||
|
|
||
|
key = self.key(key)
|
||
|
value = self.value(value)
|
||
|
receptance = torch.sigmoid(self.receptance(receptance))
|
||
|
if state is not None:
|
||
|
state[1][:, :, self.layer_id] = hidden[:, -1]
|
||
|
return receptance, key, value, state
|
||
|
|
||
|
def forward(self, hidden, state=None, use_cache=False):
|
||
|
receptance, key, value, state = self.extract_key_value(hidden, state=state)
|
||
|
layer_state = tuple(s[:, :, self.layer_id] for s in state[2:]) if state is not None else None
|
||
|
rwkv, layer_state = rwkv_linear_attention(
|
||
|
self.time_decay,
|
||
|
self.time_first,
|
||
|
key,
|
||
|
value,
|
||
|
state=layer_state,
|
||
|
return_state=use_cache,
|
||
|
)
|
||
|
|
||
|
if layer_state is not None:
|
||
|
state[2][:, :, self.layer_id] = layer_state[0]
|
||
|
state[3][:, :, self.layer_id] = layer_state[1]
|
||
|
state[4][:, :, self.layer_id] = layer_state[2]
|
||
|
|
||
|
return self.output(receptance * rwkv), state
|
||
|
|
||
|
|
||
|
class RwkvFeedForward(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_id = layer_id
|
||
|
hidden_size = config.hidden_size
|
||
|
intermediate_size = (
|
||
|
config.intermediate_size if config.intermediate_size is not None else 4 * config.hidden_size
|
||
|
)
|
||
|
|
||
|
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||
|
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||
|
self.time_mix_receptance = nn.Parameter(torch.empty(1, 1, hidden_size))
|
||
|
|
||
|
self.key = nn.Linear(hidden_size, intermediate_size, bias=False)
|
||
|
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False)
|
||
|
self.value = nn.Linear(intermediate_size, hidden_size, bias=False)
|
||
|
|
||
|
def forward(self, hidden, state=None):
|
||
|
if hidden.size(1) == 1 and state is not None:
|
||
|
shifted = state[0][:, :, self.layer_id]
|
||
|
else:
|
||
|
shifted = self.time_shift(hidden)
|
||
|
if state is not None:
|
||
|
shifted[:, 0] = state[0][:, :, self.layer_id]
|
||
|
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
||
|
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
||
|
|
||
|
key = torch.square(torch.relu(self.key(key)))
|
||
|
value = self.value(key)
|
||
|
receptance = torch.sigmoid(self.receptance(receptance))
|
||
|
|
||
|
if state is not None:
|
||
|
state[0][:, :, self.layer_id] = hidden[:, -1]
|
||
|
|
||
|
return receptance * value, state
|
||
|
|
||
|
|
||
|
class RwkvBlock(nn.Module):
|
||
|
def __init__(self, config, layer_id):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer_id = layer_id
|
||
|
|
||
|
if layer_id == 0:
|
||
|
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||
|
|
||
|
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||
|
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||
|
|
||
|
self.attention = RwkvSelfAttention(config, layer_id)
|
||
|
self.feed_forward = RwkvFeedForward(config, layer_id)
|
||
|
|
||
|
def forward(self, hidden, state=None, use_cache=False, output_attentions=False):
|
||
|
if self.layer_id == 0:
|
||
|
hidden = self.pre_ln(hidden)
|
||
|
|
||
|
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache)
|
||
|
hidden = hidden + attention
|
||
|
|
||
|
feed_forward, state = self.feed_forward(self.ln2(hidden), state=state)
|
||
|
hidden = hidden + feed_forward
|
||
|
|
||
|
outputs = (hidden, state)
|
||
|
if output_attentions:
|
||
|
outputs += (attention,)
|
||
|
else:
|
||
|
outputs += (None,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class RwkvPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = RwkvConfig
|
||
|
base_model_prefix = "rwkv"
|
||
|
_no_split_modules = ["RwkvBlock"]
|
||
|
_keep_in_fp32_modules = ["time_decay", "time_first"]
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights."""
|
||
|
if isinstance(module, RwkvSelfAttention):
|
||
|
layer_id = module.layer_id
|
||
|
num_hidden_layers = module.config.num_hidden_layers
|
||
|
hidden_size = module.config.hidden_size
|
||
|
attention_hidden_size = module.attention_hidden_size
|
||
|
|
||
|
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
||
|
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
||
|
|
||
|
time_weight = torch.tensor(
|
||
|
[i / hidden_size for i in range(hidden_size)],
|
||
|
dtype=module.time_mix_key.dtype,
|
||
|
device=module.time_mix_key.device,
|
||
|
)
|
||
|
time_weight = time_weight[None, None, :]
|
||
|
|
||
|
decay_speed = [
|
||
|
-5 + 8 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
||
|
for h in range(attention_hidden_size)
|
||
|
]
|
||
|
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device)
|
||
|
zigzag = (
|
||
|
torch.tensor(
|
||
|
[(i + 1) % 3 - 1 for i in range(attention_hidden_size)],
|
||
|
dtype=module.time_first.dtype,
|
||
|
device=module.time_first.device,
|
||
|
)
|
||
|
* 0.5
|
||
|
)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
module.time_decay.data = decay_speed
|
||
|
module.time_first.data = torch.ones_like(module.time_first * math.log(0.3) + zigzag)
|
||
|
|
||
|
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||
|
module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
|
||
|
module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
||
|
elif isinstance(module, RwkvFeedForward):
|
||
|
layer_id = module.layer_id
|
||
|
num_hidden_layers = module.config.num_hidden_layers
|
||
|
hidden_size = module.config.hidden_size
|
||
|
|
||
|
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
||
|
|
||
|
time_weight = torch.tensor(
|
||
|
[i / hidden_size for i in range(hidden_size)],
|
||
|
dtype=module.time_mix_key.dtype,
|
||
|
device=module.time_mix_key.device,
|
||
|
)
|
||
|
time_weight = time_weight[None, None, :]
|
||
|
|
||
|
with torch.no_grad():
|
||
|
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||
|
module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class RwkvOutput(ModelOutput):
|
||
|
"""
|
||
|
Class for the RWKV model outputs.
|
||
|
|
||
|
Args:
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
||
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||
|
avoid providing the old `input_ids`.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
state: Optional[List[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class RwkvCausalLMOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for causal language model (or autoregressive) outputs.
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||
|
Language modeling loss (for next-token prediction).
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||
|
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
|
||
|
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||
|
avoid providing the old `input_ids`.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
state: Optional[List[torch.FloatTensor]] = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
RWKV_START_DOCSTRING = r"""
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`RwkvConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
RWKV_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
||
|
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
||
|
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
||
|
sequence tokens in the vocabulary.
|
||
|
|
||
|
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
||
|
`input_ids`.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
This is currently not used by `RwkvModel`, but will be supported in the future.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*):
|
||
|
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
||
|
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
||
|
use_cache (`bool`, *optional*):
|
||
|
If set to `True`, the last state is returned and can be used to quickly generate the next logits.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare RWKV Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
RWKV_START_DOCSTRING,
|
||
|
)
|
||
|
class RwkvModel(RwkvPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||
|
self.blocks = nn.ModuleList([RwkvBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
|
||
|
self.ln_out = nn.LayerNorm(config.hidden_size)
|
||
|
|
||
|
self.layers_are_rescaled = False
|
||
|
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings
|
||
|
|
||
|
def set_input_embeddings(self, new_embeddings):
|
||
|
self.embeddings = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=RwkvOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None, # noqa
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
state: Optional[List[torch.FloatTensor]] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, RwkvOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if self.training == self.layers_are_rescaled:
|
||
|
self._rescale_layers()
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is None and inputs_embeds is None:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.embeddings(input_ids)
|
||
|
|
||
|
if use_cache and state is None:
|
||
|
shape = (inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers)
|
||
|
state = [
|
||
|
torch.zeros(
|
||
|
*shape, dtype=inputs_embeds.dtype if i <= 1 else torch.float32, device=inputs_embeds.device
|
||
|
)
|
||
|
for i in range(5)
|
||
|
]
|
||
|
state[4] -= 1e30
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
if use_cache:
|
||
|
logger.warning_once(
|
||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
|
)
|
||
|
use_cache = False
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
for idx, block in enumerate(self.blocks):
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
hidden_states, state, attentions = self._gradient_checkpointing_func(
|
||
|
block.__call__, hidden_states, state, use_cache, output_attentions
|
||
|
)
|
||
|
else:
|
||
|
hidden_states, state, attentions = block(
|
||
|
hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
self.layers_are_rescaled
|
||
|
and self.config.rescale_every > 0
|
||
|
and (idx + 1) % self.config.rescale_every == 0
|
||
|
):
|
||
|
hidden_states = hidden_states / 2
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (attentions,)
|
||
|
|
||
|
hidden_states = self.ln_out(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(x for x in [hidden_states, state, all_hidden_states, all_self_attentions] if x is not None)
|
||
|
|
||
|
return RwkvOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
state=state,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
def _rescale_layers(self):
|
||
|
# Layers should be rescaled for inference only.
|
||
|
if self.layers_are_rescaled == (not self.training):
|
||
|
return
|
||
|
if self.config.rescale_every > 0:
|
||
|
with torch.no_grad():
|
||
|
for block_id, block in enumerate(self.blocks):
|
||
|
if self.training:
|
||
|
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
||
|
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every))
|
||
|
else:
|
||
|
# Deal with quantization statistics
|
||
|
if hasattr(block.attention.output.weight, "SCB"):
|
||
|
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
||
|
block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every))
|
||
|
elif hasattr(block.attention.output.weight, "quant_state"):
|
||
|
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id)
|
||
|
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id)
|
||
|
else:
|
||
|
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
||
|
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every))
|
||
|
|
||
|
self.layers_are_rescaled = not self.training
|
||
|
|
||
|
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
|
||
|
r"""
|
||
|
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
|
||
|
be quantized again.
|
||
|
"""
|
||
|
if not is_bitsandbytes_available():
|
||
|
raise ImportError("Please install bitsandbytes to use this method.")
|
||
|
import bitsandbytes as bnb
|
||
|
|
||
|
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
|
||
|
|
||
|
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
|
||
|
|
||
|
# re-quantize the model:
|
||
|
# we need to put it first on CPU then back to the device
|
||
|
# this will create an overhead :/
|
||
|
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
|
||
|
# bugs with bnb
|
||
|
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
|
||
|
setattr(target_layer, "weight", quant_weight)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
The RWKV Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
||
|
embeddings).
|
||
|
""",
|
||
|
RWKV_START_DOCSTRING,
|
||
|
)
|
||
|
class RwkvForCausalLM(RwkvPreTrainedModel):
|
||
|
_tied_weights_keys = ["head.weight"]
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.rwkv = RwkvModel(config)
|
||
|
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.head
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.head = new_embeddings
|
||
|
|
||
|
def generate(self, *args, **kwargs):
|
||
|
# Thin wrapper to raise exceptions when trying to generate with methods that manipulate `past_key_values`.
|
||
|
# RWKV is one of the few models that don't have it (it has `state` instead, which has different properties and
|
||
|
# usage).
|
||
|
try:
|
||
|
gen_output = super().generate(*args, **kwargs)
|
||
|
except AttributeError as exc:
|
||
|
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
|
||
|
if "past_key_values" in str(exc):
|
||
|
raise AttributeError(
|
||
|
"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`. RWKV "
|
||
|
"doesn't have that attribute, try another generation strategy instead. For the available "
|
||
|
"generation strategies, check this doc: https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||
|
)
|
||
|
else:
|
||
|
raise exc
|
||
|
return gen_output
|
||
|
|
||
|
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs):
|
||
|
# only last token for inputs_ids if the state is passed along.
|
||
|
if state is not None:
|
||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||
|
|
||
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||
|
if inputs_embeds is not None and state is None:
|
||
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
||
|
else:
|
||
|
model_inputs = {"input_ids": input_ids}
|
||
|
|
||
|
model_inputs["state"] = state
|
||
|
return model_inputs
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=RwkvCausalLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None, # noqa
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
state: Optional[List[torch.FloatTensor]] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
use_cache: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, RwkvCausalLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||
|
"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
rwkv_outputs = self.rwkv(
|
||
|
input_ids,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
state=state,
|
||
|
use_cache=use_cache,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
hidden_states = rwkv_outputs[0]
|
||
|
|
||
|
logits = self.head(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# move labels to correct device to enable model parallelism
|
||
|
labels = labels.to(logits.device)
|
||
|
# Shift so that tokens < n predict n
|
||
|
shift_logits = logits[..., :-1, :].contiguous()
|
||
|
shift_labels = labels[..., 1:].contiguous()
|
||
|
# Flatten the tokens
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + rwkv_outputs[1:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return RwkvCausalLMOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
state=rwkv_outputs.state,
|
||
|
hidden_states=rwkv_outputs.hidden_states,
|
||
|
attentions=rwkv_outputs.attentions,
|
||
|
)
|