1313 lines
55 KiB
Python
1313 lines
55 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch Siglip model."""
|
||
|
|
||
|
|
||
|
import math
|
||
|
import warnings
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Any, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
from torch.nn.init import _calculate_fan_in_and_fan_out
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_siglip import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
# General docstring
|
||
|
_CONFIG_FOR_DOC = "SiglipConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
def _trunc_normal_(tensor, mean, std, a, b):
|
||
|
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||
|
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||
|
def norm_cdf(x):
|
||
|
# Computes standard normal cumulative distribution function
|
||
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
||
|
|
||
|
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||
|
warnings.warn(
|
||
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
||
|
"The distribution of values may be incorrect.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
|
||
|
# Values are generated by using a truncated uniform distribution and
|
||
|
# then using the inverse CDF for the normal distribution.
|
||
|
# Get upper and lower cdf values
|
||
|
l = norm_cdf((a - mean) / std)
|
||
|
u = norm_cdf((b - mean) / std)
|
||
|
|
||
|
# Uniformly fill tensor with values from [l, u], then translate to
|
||
|
# [2l-1, 2u-1].
|
||
|
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||
|
|
||
|
# Use inverse cdf transform for normal distribution to get truncated
|
||
|
# standard normal
|
||
|
tensor.erfinv_()
|
||
|
|
||
|
# Transform to proper mean, std
|
||
|
tensor.mul_(std * math.sqrt(2.0))
|
||
|
tensor.add_(mean)
|
||
|
|
||
|
# Clamp to ensure it's in the proper range
|
||
|
tensor.clamp_(min=a, max=b)
|
||
|
|
||
|
|
||
|
def trunc_normal_tf_(
|
||
|
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
||
|
) -> torch.Tensor:
|
||
|
"""Fills the input Tensor with values drawn from a truncated
|
||
|
normal distribution. The values are effectively drawn from the
|
||
|
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
||
|
with values outside :math:`[a, b]` redrawn until they are within
|
||
|
the bounds. The method used for generating the random values works
|
||
|
best when :math:`a \\leq \text{mean} \\leq b`.
|
||
|
|
||
|
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
||
|
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
||
|
and the result is subsquently scaled and shifted by the mean and std args.
|
||
|
|
||
|
Args:
|
||
|
tensor: an n-dimensional `torch.Tensor`
|
||
|
mean: the mean of the normal distribution
|
||
|
std: the standard deviation of the normal distribution
|
||
|
a: the minimum cutoff value
|
||
|
b: the maximum cutoff value
|
||
|
"""
|
||
|
with torch.no_grad():
|
||
|
_trunc_normal_(tensor, 0, 1.0, a, b)
|
||
|
tensor.mul_(std).add_(mean)
|
||
|
|
||
|
|
||
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
||
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||
|
if mode == "fan_in":
|
||
|
denom = fan_in
|
||
|
elif mode == "fan_out":
|
||
|
denom = fan_out
|
||
|
elif mode == "fan_avg":
|
||
|
denom = (fan_in + fan_out) / 2
|
||
|
|
||
|
variance = scale / denom
|
||
|
|
||
|
if distribution == "truncated_normal":
|
||
|
# constant is stddev of standard normal truncated to (-2, 2)
|
||
|
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
||
|
elif distribution == "normal":
|
||
|
with torch.no_grad():
|
||
|
tensor.normal_(std=math.sqrt(variance))
|
||
|
elif distribution == "uniform":
|
||
|
bound = math.sqrt(3 * variance)
|
||
|
with torch.no_grad():
|
||
|
tensor.uniform_(-bound, bound)
|
||
|
else:
|
||
|
raise ValueError(f"invalid distribution {distribution}")
|
||
|
|
||
|
|
||
|
def lecun_normal_(tensor):
|
||
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
||
|
|
||
|
|
||
|
def default_flax_embed_init(tensor):
|
||
|
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
||
|
class SiglipVisionModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
||
|
|
||
|
Args:
|
||
|
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
image_embeds: Optional[torch.FloatTensor] = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
||
|
class SiglipTextModelOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
||
|
|
||
|
Args:
|
||
|
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
||
|
The text embeddings obtained by applying the projection layer to the pooler_output.
|
||
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Sequence of hidden-states at the output of the last layer of the model.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
"""
|
||
|
|
||
|
text_embeds: Optional[torch.FloatTensor] = None
|
||
|
last_hidden_state: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
||
|
class SiglipOutput(ModelOutput):
|
||
|
"""
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
||
|
Contrastive loss for image-text similarity.
|
||
|
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
||
|
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
||
|
similarity scores.
|
||
|
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
||
|
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
||
|
similarity scores.
|
||
|
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
||
|
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
||
|
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
||
|
text_model_output(`BaseModelOutputWithPooling`):
|
||
|
The output of the [`SiglipTextModel`].
|
||
|
vision_model_output(`BaseModelOutputWithPooling`):
|
||
|
The output of the [`SiglipVisionModel`].
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits_per_image: torch.FloatTensor = None
|
||
|
logits_per_text: torch.FloatTensor = None
|
||
|
text_embeds: torch.FloatTensor = None
|
||
|
image_embeds: torch.FloatTensor = None
|
||
|
text_model_output: BaseModelOutputWithPooling = None
|
||
|
vision_model_output: BaseModelOutputWithPooling = None
|
||
|
|
||
|
def to_tuple(self) -> Tuple[Any]:
|
||
|
return tuple(
|
||
|
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
||
|
for k in self.keys()
|
||
|
)
|
||
|
|
||
|
|
||
|
class SiglipVisionEmbeddings(nn.Module):
|
||
|
def __init__(self, config: SiglipVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.image_size = config.image_size
|
||
|
self.patch_size = config.patch_size
|
||
|
|
||
|
self.patch_embedding = nn.Conv2d(
|
||
|
in_channels=config.num_channels,
|
||
|
out_channels=self.embed_dim,
|
||
|
kernel_size=self.patch_size,
|
||
|
stride=self.patch_size,
|
||
|
padding="valid",
|
||
|
)
|
||
|
|
||
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
||
|
self.num_positions = self.num_patches
|
||
|
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
||
|
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
||
|
|
||
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
||
|
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
||
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
||
|
|
||
|
embeddings = embeddings + self.position_embedding(self.position_ids)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
||
|
class SiglipTextEmbeddings(nn.Module):
|
||
|
def __init__(self, config: SiglipTextConfig):
|
||
|
super().__init__()
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
||
|
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
||
|
|
||
|
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
||
|
self.register_buffer(
|
||
|
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.Tensor:
|
||
|
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
||
|
|
||
|
if position_ids is None:
|
||
|
position_ids = self.position_ids[:, :seq_length]
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.token_embedding(input_ids)
|
||
|
|
||
|
position_embeddings = self.position_embedding(position_ids)
|
||
|
embeddings = inputs_embeds + position_embeddings
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class SiglipAttention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.num_heads = config.num_attention_heads
|
||
|
self.head_dim = self.embed_dim // self.num_heads
|
||
|
if self.head_dim * self.num_heads != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||
|
f" {self.num_heads})."
|
||
|
)
|
||
|
self.scale = self.head_dim**-0.5
|
||
|
self.dropout = config.attention_dropout
|
||
|
|
||
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
batch_size, q_len, _ = hidden_states.size()
|
||
|
|
||
|
query_states = self.q_proj(hidden_states)
|
||
|
key_states = self.k_proj(hidden_states)
|
||
|
value_states = self.v_proj(hidden_states)
|
||
|
|
||
|
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
||
|
|
||
|
k_v_seq_len = key_states.shape[-2]
|
||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
||
|
|
||
|
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights + attention_mask
|
||
|
|
||
|
# upcast attention to fp32
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
||
|
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||
|
|
||
|
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
||
|
class SiglipMLP(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.activation_fn = ACT2FN[config.hidden_act]
|
||
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.fc1(hidden_states)
|
||
|
hidden_states = self.activation_fn(hidden_states)
|
||
|
hidden_states = self.fc2(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
||
|
class SiglipEncoderLayer(nn.Module):
|
||
|
def __init__(self, config: SiglipConfig):
|
||
|
super().__init__()
|
||
|
self.embed_dim = config.hidden_size
|
||
|
self.self_attn = SiglipAttention(config)
|
||
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
self.mlp = SiglipMLP(config)
|
||
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
# Ignore copy
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: torch.Tensor,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.FloatTensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor`):
|
||
|
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
||
|
attention_mask (`torch.FloatTensor`):
|
||
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
||
|
output_attentions (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
"""
|
||
|
residual = hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm1(hidden_states)
|
||
|
hidden_states, attn_weights = self.self_attn(
|
||
|
hidden_states=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
residual = hidden_states
|
||
|
hidden_states = self.layer_norm2(hidden_states)
|
||
|
hidden_states = self.mlp(hidden_states)
|
||
|
hidden_states = residual + hidden_states
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class SiglipPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = SiglipConfig
|
||
|
base_model_prefix = "siglip"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, SiglipVisionEmbeddings):
|
||
|
width = (
|
||
|
self.config.vision_config.hidden_size
|
||
|
if isinstance(self.config, SiglipConfig)
|
||
|
else self.config.hidden_size
|
||
|
)
|
||
|
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
default_flax_embed_init(module.weight)
|
||
|
elif isinstance(module, SiglipAttention):
|
||
|
nn.init.xavier_uniform_(module.q_proj.weight)
|
||
|
nn.init.xavier_uniform_(module.k_proj.weight)
|
||
|
nn.init.xavier_uniform_(module.v_proj.weight)
|
||
|
nn.init.xavier_uniform_(module.out_proj.weight)
|
||
|
nn.init.zeros_(module.q_proj.bias)
|
||
|
nn.init.zeros_(module.k_proj.bias)
|
||
|
nn.init.zeros_(module.v_proj.bias)
|
||
|
nn.init.zeros_(module.out_proj.bias)
|
||
|
elif isinstance(module, SiglipMLP):
|
||
|
nn.init.xavier_uniform_(module.fc1.weight)
|
||
|
nn.init.xavier_uniform_(module.fc2.weight)
|
||
|
nn.init.normal_(module.fc1.bias, std=1e-6)
|
||
|
nn.init.normal_(module.fc2.bias, std=1e-6)
|
||
|
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
||
|
nn.init.xavier_uniform_(module.probe.data)
|
||
|
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
|
||
|
nn.init.zeros_(module.attention.in_proj_bias.data)
|
||
|
elif isinstance(module, SiglipModel):
|
||
|
logit_scale_init = torch.log(torch.tensor(1.0))
|
||
|
module.logit_scale.data.fill_(logit_scale_init)
|
||
|
module.logit_bias.data.zero_()
|
||
|
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
lecun_normal_(module.weight)
|
||
|
if module.bias is not None:
|
||
|
nn.init.zeros_(module.bias)
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
SIGLIP_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
SIGLIP_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
||
|
it.
|
||
|
|
||
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
||
|
config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
||
|
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
||
|
return_loss (`bool`, *optional*):
|
||
|
Whether or not to return the contrastive loss.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
||
|
class SiglipEncoder(nn.Module):
|
||
|
"""
|
||
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
||
|
[`SiglipEncoderLayer`].
|
||
|
|
||
|
Args:
|
||
|
config: SiglipConfig
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: SiglipConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
# Ignore copy
|
||
|
def forward(
|
||
|
self,
|
||
|
inputs_embeds,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
r"""
|
||
|
Args:
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||
|
than the model's internal embedding lookup matrix.
|
||
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||
|
returned tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
||
|
for more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
encoder_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
|
||
|
hidden_states = inputs_embeds
|
||
|
for encoder_layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
encoder_layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = encoder_layer(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
encoder_states = encoder_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
class SiglipTextTransformer(nn.Module):
|
||
|
def __init__(self, config: SiglipTextConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
self.embeddings = SiglipTextEmbeddings(config)
|
||
|
self.encoder = SiglipEncoder(config)
|
||
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
|
||
|
self.head = nn.Linear(embed_dim, embed_dim)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is None:
|
||
|
raise ValueError("You have to specify input_ids")
|
||
|
|
||
|
input_shape = input_ids.size()
|
||
|
input_ids = input_ids.view(-1, input_shape[-1])
|
||
|
|
||
|
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
||
|
|
||
|
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
||
|
# expand attention_mask
|
||
|
if attention_mask is not None:
|
||
|
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
||
|
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
||
|
|
||
|
# Assuming "sticky" EOS tokenization, last token is always EOS.
|
||
|
pooled_output = last_hidden_state[:, -1, :]
|
||
|
pooled_output = self.head(pooled_output)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""The text model from SigLIP without any head or projection on top.""",
|
||
|
SIGLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class SiglipTextModel(SiglipPreTrainedModel):
|
||
|
config_class = SiglipTextConfig
|
||
|
|
||
|
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
||
|
|
||
|
def __init__(self, config: SiglipTextConfig):
|
||
|
super().__init__(config)
|
||
|
self.text_model = SiglipTextTransformer(config)
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.text_model.embeddings.token_embedding
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.text_model.embeddings.token_embedding = value
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, SiglipTextModel
|
||
|
|
||
|
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
||
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> last_hidden_state = outputs.last_hidden_state
|
||
|
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
return self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SiglipVisionTransformer(nn.Module):
|
||
|
def __init__(self, config: SiglipVisionConfig):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
embed_dim = config.hidden_size
|
||
|
|
||
|
self.embeddings = SiglipVisionEmbeddings(config)
|
||
|
self.encoder = SiglipEncoder(config)
|
||
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
||
|
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
hidden_states = self.embeddings(pixel_values)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
inputs_embeds=hidden_states,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
last_hidden_state = encoder_outputs[0]
|
||
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
||
|
|
||
|
pooled_output = self.head(last_hidden_state)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
||
|
"""Multihead Attention Pooling."""
|
||
|
|
||
|
def __init__(self, config: SiglipVisionConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
||
|
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
||
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.mlp = SiglipMLP(config)
|
||
|
|
||
|
def forward(self, hidden_state):
|
||
|
batch_size = hidden_state.shape[0]
|
||
|
probe = self.probe.repeat(batch_size, 1, 1)
|
||
|
|
||
|
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
||
|
|
||
|
residual = hidden_state
|
||
|
hidden_state = self.layernorm(hidden_state)
|
||
|
hidden_state = residual + self.mlp(hidden_state)
|
||
|
|
||
|
return hidden_state[:, 0]
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""The vision model from SigLIP without any head or projection on top.""",
|
||
|
SIGLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class SiglipVisionModel(SiglipPreTrainedModel):
|
||
|
config_class = SiglipVisionConfig
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: SiglipVisionConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.vision_model = SiglipVisionTransformer(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
return self.vision_model.embeddings.patch_embedding
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, SiglipVisionModel
|
||
|
|
||
|
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> last_hidden_state = outputs.last_hidden_state
|
||
|
>>> pooled_output = outputs.pooler_output # pooled features
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
return self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(SIGLIP_START_DOCSTRING)
|
||
|
class SiglipModel(SiglipPreTrainedModel):
|
||
|
config_class = SiglipConfig
|
||
|
|
||
|
def __init__(self, config: SiglipConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if not isinstance(config.text_config, SiglipTextConfig):
|
||
|
raise ValueError(
|
||
|
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
||
|
f" {type(config.text_config)}."
|
||
|
)
|
||
|
|
||
|
if not isinstance(config.vision_config, SiglipVisionConfig):
|
||
|
raise ValueError(
|
||
|
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
||
|
f" {type(config.vision_config)}."
|
||
|
)
|
||
|
|
||
|
text_config = config.text_config
|
||
|
vision_config = config.vision_config
|
||
|
|
||
|
self.text_model = SiglipTextTransformer(text_config)
|
||
|
self.vision_model = SiglipVisionTransformer(vision_config)
|
||
|
|
||
|
self.logit_scale = nn.Parameter(torch.randn(1))
|
||
|
self.logit_bias = nn.Parameter(torch.randn(1))
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
||
|
def get_text_features(
|
||
|
self,
|
||
|
input_ids: Optional[torch.Tensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`SiglipTextModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, AutoModel
|
||
|
>>> import torch
|
||
|
|
||
|
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
||
|
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
||
|
>>> with torch.no_grad():
|
||
|
... text_features = model.get_text_features(**inputs)
|
||
|
```"""
|
||
|
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = text_outputs[1]
|
||
|
|
||
|
return pooled_output
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
||
|
def get_image_features(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
r"""
|
||
|
Returns:
|
||
|
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
||
|
applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, AutoModel
|
||
|
>>> import torch
|
||
|
|
||
|
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> inputs = processor(images=image, return_tensors="pt")
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... image_features = model.get_image_features(**inputs)
|
||
|
```"""
|
||
|
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = vision_outputs[1]
|
||
|
|
||
|
return pooled_output
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
return_loss: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, SiglipOutput]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
>>> from transformers import AutoProcessor, AutoModel
|
||
|
>>> import torch
|
||
|
|
||
|
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
||
|
>>> # important: we pass `padding=max_length` since the model was trained with this
|
||
|
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(**inputs)
|
||
|
|
||
|
>>> logits_per_image = outputs.logits_per_image
|
||
|
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
||
|
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
||
|
31.9% that image 0 is 'a photo of 2 cats'
|
||
|
```"""
|
||
|
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
vision_outputs = self.vision_model(
|
||
|
pixel_values=pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
text_outputs = self.text_model(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
position_ids=position_ids,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
image_embeds = vision_outputs[1]
|
||
|
text_embeds = text_outputs[1]
|
||
|
|
||
|
# normalized features
|
||
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
||
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
||
|
|
||
|
# cosine similarity as logits
|
||
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
||
|
logits_per_image = logits_per_text.t()
|
||
|
|
||
|
loss = None
|
||
|
if return_loss:
|
||
|
raise NotImplementedError("SigLIP loss to be implemented")
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SiglipOutput(
|
||
|
loss=loss,
|
||
|
logits_per_image=logits_per_image,
|
||
|
logits_per_text=logits_per_text,
|
||
|
text_embeds=text_embeds,
|
||
|
image_embeds=image_embeds,
|
||
|
text_model_output=text_outputs,
|
||
|
vision_model_output=vision_outputs,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
SigLIP vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of
|
||
|
the patch tokens) e.g. for ImageNet.
|
||
|
""",
|
||
|
SIGLIP_START_DOCSTRING,
|
||
|
)
|
||
|
class SiglipForImageClassification(SiglipPreTrainedModel):
|
||
|
main_input_name = "pixel_values"
|
||
|
|
||
|
def __init__(self, config: SiglipConfig) -> None:
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.num_labels = config.num_labels
|
||
|
self.vision_model = SiglipVisionTransformer(config.vision_config)
|
||
|
|
||
|
# Classifier head
|
||
|
self.classifier = (
|
||
|
nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
||
|
)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[tuple, ImageClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoImageProcessor, SiglipForImageClassification
|
||
|
>>> import torch
|
||
|
>>> from PIL import Image
|
||
|
>>> import requests
|
||
|
|
||
|
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
|
||
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||
|
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||
|
|
||
|
>>> # note: we are loading a `SiglipModel` from the hub here,
|
||
|
>>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above.
|
||
|
>>> image_processor = AutoImageProcessor.from_pretrained("google/siglip-base-patch16-224")
|
||
|
>>> model = SiglipForImageClassification.from_pretrained("google/siglip-base-patch16-224")
|
||
|
|
||
|
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
>>> logits = outputs.logits
|
||
|
>>> # model predicts one of the two classes
|
||
|
>>> predicted_class_idx = logits.argmax(-1).item()
|
||
|
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
|
||
|
Predicted class: LABEL_0
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.vision_model(
|
||
|
pixel_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
|
||
|
# average pool the patch tokens
|
||
|
sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
|
||
|
# apply classifier
|
||
|
logits = self.classifier(sequence_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
# move labels to correct device to enable model parallelism
|
||
|
labels = labels.to(logits.device)
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return ImageClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|