ai-content-maker/.venv/Lib/site-packages/transformers/models/speecht5/configuration_speecht5.py

428 lines
23 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The Fairseq Authors, Microsoft Research, and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SpeechT5 model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP = {
"microsoft/speecht5_hifigan": "https://huggingface.co/microsoft/speecht5_hifigan/resolve/main/config.json",
}
class SpeechT5Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SpeechT5Model`]. It is used to instantiate a
SpeechT5 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the SpeechT5
[microsoft/speecht5_asr](https://huggingface.co/microsoft/speecht5_asr) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 81):
Vocabulary size of the SpeechT5 model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed to the forward method of [`SpeechT5Model`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
encoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
encoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layers (`int`, *optional*, defaults to 6):
Number of hidden layers in the Transformer decoder.
decoder_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer decoder.
decoder_layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
positional_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the text position encoding layers.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in the speech encoder pre-net. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the speech encoder pre-net.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
speech encoder pre-net. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the speech encoder pre-net. The
length of *conv_stride* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the speech encoder pre-net.
The length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the speech encoder pre-net. For
reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_mel_bins (`int`, *optional*, defaults to 80):
Number of mel features used per input features. Used by the speech decoder pre-net. Should correspond to
the value used in the [`SpeechT5Processor`] class.
speech_decoder_prenet_layers (`int`, *optional*, defaults to 2):
Number of layers in the speech decoder pre-net.
speech_decoder_prenet_units (`int`, *optional*, defaults to 256):
Dimensionality of the layers in the speech decoder pre-net.
speech_decoder_prenet_dropout (`float`, *optional*, defaults to 0.5):
The dropout probability for the speech decoder pre-net layers.
speaker_embedding_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
speech_decoder_postnet_layers (`int`, *optional*, defaults to 5):
Number of layers in the speech decoder post-net.
speech_decoder_postnet_units (`int`, *optional*, defaults to 256):
Dimensionality of the layers in the speech decoder post-net.
speech_decoder_postnet_kernel (`int`, *optional*, defaults to 5):
Number of convolutional filter channels in the speech decoder post-net.
speech_decoder_postnet_dropout (`float`, *optional*, defaults to 0.5):
The dropout probability for the speech decoder post-net layers.
reduction_factor (`int`, *optional*, defaults to 2):
Spectrogram length reduction factor for the speech decoder inputs.
max_speech_positions (`int`, *optional*, defaults to 4000):
The maximum sequence length of speech features that this model might ever be used with.
max_text_positions (`int`, *optional*, defaults to 450):
The maximum sequence length of text features that this model might ever be used with.
encoder_max_relative_position (`int`, *optional*, defaults to 160):
Maximum distance for relative position embedding in the encoder.
use_guided_attention_loss (`bool`, *optional*, defaults to `True`):
Whether to apply guided attention loss while training the TTS model.
guided_attention_loss_num_heads (`int`, *optional*, defaults to 2):
Number of attention heads the guided attention loss will be applied to. Use -1 to apply this loss to all
attention heads.
guided_attention_loss_sigma (`float`, *optional*, defaults to 0.4):
Standard deviation for guided attention loss.
guided_attention_loss_scale (`float`, *optional*, defaults to 10.0):
Scaling coefficient for guided attention loss (also known as lambda).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import SpeechT5Model, SpeechT5Config
>>> # Initializing a "microsoft/speecht5_asr" style configuration
>>> configuration = SpeechT5Config()
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_asr" style configuration
>>> model = SpeechT5Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "speecht5"
attribute_map = {"num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers"}
def __init__(
self,
vocab_size=81,
hidden_size=768,
encoder_layers=12,
encoder_attention_heads=12,
encoder_ffn_dim=3072,
encoder_layerdrop=0.1,
decoder_layers=6,
decoder_ffn_dim=3072,
decoder_attention_heads=12,
decoder_layerdrop=0.1,
hidden_act="gelu",
positional_dropout=0.1,
hidden_dropout=0.1,
attention_dropout=0.1,
activation_dropout=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
scale_embedding=False,
feat_extract_norm="group",
feat_proj_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
decoder_start_token_id=2,
num_mel_bins=80,
speech_decoder_prenet_layers=2,
speech_decoder_prenet_units=256,
speech_decoder_prenet_dropout=0.5,
speaker_embedding_dim=512,
speech_decoder_postnet_layers=5,
speech_decoder_postnet_units=256,
speech_decoder_postnet_kernel=5,
speech_decoder_postnet_dropout=0.5,
reduction_factor=2,
max_speech_positions=4000,
max_text_positions=450,
encoder_max_relative_position=160,
use_guided_attention_loss=True,
guided_attention_loss_num_heads=2,
guided_attention_loss_sigma=0.4,
guided_attention_loss_scale=10.0,
use_cache=True,
is_encoder_decoder=True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_layers = encoder_layers
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_attention_heads = decoder_attention_heads
self.decoder_layerdrop = decoder_layerdrop
self.hidden_act = hidden_act
self.positional_dropout = positional_dropout
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.scale_embedding = scale_embedding
self.feat_extract_norm = feat_extract_norm
self.feat_proj_dropout = feat_proj_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
self.num_mel_bins = num_mel_bins
self.speech_decoder_prenet_layers = speech_decoder_prenet_layers
self.speech_decoder_prenet_units = speech_decoder_prenet_units
self.speech_decoder_prenet_dropout = speech_decoder_prenet_dropout
self.speaker_embedding_dim = speaker_embedding_dim
self.speech_decoder_postnet_layers = speech_decoder_postnet_layers
self.speech_decoder_postnet_units = speech_decoder_postnet_units
self.speech_decoder_postnet_kernel = speech_decoder_postnet_kernel
self.speech_decoder_postnet_dropout = speech_decoder_postnet_dropout
self.reduction_factor = reduction_factor
self.max_speech_positions = max_speech_positions
self.max_text_positions = max_text_positions
self.encoder_max_relative_position = encoder_max_relative_position
self.use_guided_attention_loss = use_guided_attention_loss
self.guided_attention_loss_num_heads = guided_attention_loss_num_heads
self.guided_attention_loss_sigma = guided_attention_loss_sigma
self.guided_attention_loss_scale = guided_attention_loss_scale
self.use_cache = use_cache
self.is_encoder_decoder = is_encoder_decoder
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
class SpeechT5HifiGanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SpeechT5HifiGanModel`]. It is used to instantiate
a SpeechT5 HiFi-GAN vocoder model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the SpeechT5
[microsoft/speecht5_hifigan](https://huggingface.co/microsoft/speecht5_hifigan) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_dim (`int`, *optional*, defaults to 80):
The number of frequency bins in the input log-mel spectrogram.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the output audio will be generated, expressed in hertz (Hz).
upsample_initial_channel (`int`, *optional*, defaults to 512):
The number of input channels into the upsampling network.
upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
A tuple of integers defining the stride of each 1D convolutional layer in the upsampling network. The
length of *upsample_rates* defines the number of convolutional layers and has to match the length of
*upsample_kernel_sizes*.
upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 8, 8]`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the upsampling network. The
length of *upsample_kernel_sizes* defines the number of convolutional layers and has to match the length of
*upsample_rates*.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the multi-receptive field
fusion (MRF) module.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
multi-receptive field fusion (MRF) module.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.1):
The angle of the negative slope used by the leaky ReLU activation.
normalize_before (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the spectrogram before vocoding using the vocoder's learned mean and variance.
Example:
```python
>>> from transformers import SpeechT5HifiGan, SpeechT5HifiGanConfig
>>> # Initializing a "microsoft/speecht5_hifigan" style configuration
>>> configuration = SpeechT5HifiGanConfig()
>>> # Initializing a model (with random weights) from the "microsoft/speecht5_hifigan" style configuration
>>> model = SpeechT5HifiGan(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "hifigan"
def __init__(
self,
model_in_dim=80,
sampling_rate=16000,
upsample_initial_channel=512,
upsample_rates=[4, 4, 4, 4],
upsample_kernel_sizes=[8, 8, 8, 8],
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
initializer_range=0.01,
leaky_relu_slope=0.1,
normalize_before=True,
**kwargs,
):
self.model_in_dim = model_in_dim
self.sampling_rate = sampling_rate
self.upsample_initial_channel = upsample_initial_channel
self.upsample_rates = upsample_rates
self.upsample_kernel_sizes = upsample_kernel_sizes
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
self.normalize_before = normalize_before
super().__init__(**kwargs)