220 lines
8.7 KiB
Python
220 lines
8.7 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tokenization class for SpeechT5."""
|
||
|
|
||
|
|
||
|
import os
|
||
|
from shutil import copyfile
|
||
|
from typing import Any, Dict, List, Optional, Tuple
|
||
|
|
||
|
import sentencepiece as spm
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
from .number_normalizer import EnglishNumberNormalizer
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "spm_char.model"}
|
||
|
|
||
|
|
||
|
class SpeechT5Tokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Construct a SpeechT5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
||
|
this superclass for more information regarding those methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
||
|
contains the vocabulary necessary to instantiate a tokenizer.
|
||
|
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
||
|
The begin of sequence token.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sequence token.
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding, for example when batching sequences of different lengths.
|
||
|
normalize (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to convert numeric quantities in the text to their spelt-out english counterparts.
|
||
|
sp_model_kwargs (`dict`, *optional*):
|
||
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
||
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
||
|
to set:
|
||
|
|
||
|
- `enable_sampling`: Enable subword regularization.
|
||
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
||
|
|
||
|
- `nbest_size = {0,1}`: No sampling is performed.
|
||
|
- `nbest_size > 1`: samples from the nbest_size results.
|
||
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
||
|
using forward-filtering-and-backward-sampling algorithm.
|
||
|
|
||
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
||
|
BPE-dropout.
|
||
|
|
||
|
Attributes:
|
||
|
sp_model (`SentencePieceProcessor`):
|
||
|
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
bos_token="<s>",
|
||
|
eos_token="</s>",
|
||
|
unk_token="<unk>",
|
||
|
pad_token="<pad>",
|
||
|
normalize=False,
|
||
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||
|
self.vocab_file = vocab_file
|
||
|
self.normalize = normalize
|
||
|
self._normalizer = None
|
||
|
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(vocab_file)
|
||
|
|
||
|
super().__init__(
|
||
|
bos_token=bos_token,
|
||
|
eos_token=eos_token,
|
||
|
unk_token=unk_token,
|
||
|
pad_token=pad_token,
|
||
|
normalize=normalize,
|
||
|
sp_model_kwargs=self.sp_model_kwargs,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
||
|
normalize = kwargs.pop("normalize", self.normalize)
|
||
|
if is_split_into_words:
|
||
|
text = " " + text
|
||
|
if normalize:
|
||
|
text = self.normalizer(text)
|
||
|
return (text, kwargs)
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self):
|
||
|
return self.sp_model.get_piece_size()
|
||
|
|
||
|
@property
|
||
|
def normalizer(self):
|
||
|
if self._normalizer is None:
|
||
|
self._normalizer = EnglishNumberNormalizer()
|
||
|
return self._normalizer
|
||
|
|
||
|
@normalizer.setter
|
||
|
def normalizer(self, value):
|
||
|
self._normalizer = value
|
||
|
|
||
|
def get_vocab(self):
|
||
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||
|
vocab.update(self.added_tokens_encoder)
|
||
|
return vocab
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
state["sp_model"] = None
|
||
|
return state
|
||
|
|
||
|
def __setstate__(self, d):
|
||
|
self.__dict__ = d
|
||
|
|
||
|
# for backward compatibility
|
||
|
if not hasattr(self, "sp_model_kwargs"):
|
||
|
self.sp_model_kwargs = {}
|
||
|
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(self.vocab_file)
|
||
|
|
||
|
def _tokenize(self, text: str) -> List[str]:
|
||
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
||
|
return self.sp_model.encode(text, out_type=str)
|
||
|
|
||
|
def _convert_token_to_id(self, token):
|
||
|
"""Converts a token (str) in an id using the vocab."""
|
||
|
return self.sp_model.piece_to_id(token)
|
||
|
|
||
|
def _convert_id_to_token(self, index):
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
token = self.sp_model.IdToPiece(index)
|
||
|
return token
|
||
|
|
||
|
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
|
||
|
def convert_tokens_to_string(self, tokens):
|
||
|
"""Converts a sequence of tokens (string) in a single string."""
|
||
|
current_sub_tokens = []
|
||
|
out_string = ""
|
||
|
prev_is_special = False
|
||
|
for token in tokens:
|
||
|
# make sure that special tokens are not decoded using sentencepiece model
|
||
|
if token in self.all_special_tokens:
|
||
|
if not prev_is_special:
|
||
|
out_string += " "
|
||
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||
|
prev_is_special = True
|
||
|
current_sub_tokens = []
|
||
|
else:
|
||
|
current_sub_tokens.append(token)
|
||
|
prev_is_special = False
|
||
|
out_string += self.sp_model.decode(current_sub_tokens)
|
||
|
return out_string.strip()
|
||
|
|
||
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
||
|
"""Build model inputs from a sequence by appending eos_token_id."""
|
||
|
if token_ids_1 is None:
|
||
|
return token_ids_0 + [self.eos_token_id]
|
||
|
# We don't expect to process pairs, but leave the pair logic for API consistency
|
||
|
return token_ids_0 + token_ids_1 + [self.eos_token_id]
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
if already_has_special_tokens:
|
||
|
return super().get_special_tokens_mask(
|
||
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||
|
)
|
||
|
|
||
|
suffix_ones = [1]
|
||
|
if token_ids_1 is None:
|
||
|
return ([0] * len(token_ids_0)) + suffix_ones
|
||
|
return ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
out_vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||
|
copyfile(self.vocab_file, out_vocab_file)
|
||
|
elif not os.path.isfile(self.vocab_file):
|
||
|
with open(out_vocab_file, "wb") as fi:
|
||
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
||
|
fi.write(content_spiece_model)
|
||
|
|
||
|
return (out_vocab_file,)
|