ai-content-maker/.venv/Lib/site-packages/transformers/models/superpoint/modeling_superpoint.py

501 lines
21 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch SuperPoint model."""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import (
BaseModelOutputWithNoAttention,
)
from transformers.models.superpoint.configuration_superpoint import SuperPointConfig
from ...pytorch_utils import is_torch_greater_or_equal_than_1_13
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "SuperPointConfig"
_CHECKPOINT_FOR_DOC = "magic-leap-community/superpoint"
SUPERPOINT_PRETRAINED_MODEL_ARCHIVE_LIST = ["magic-leap-community/superpoint"]
def remove_keypoints_from_borders(
keypoints: torch.Tensor, scores: torch.Tensor, border: int, height: int, width: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Removes keypoints (and their associated scores) that are too close to the border"""
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border))
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border))
mask = mask_h & mask_w
return keypoints[mask], scores[mask]
def top_k_keypoints(keypoints: torch.Tensor, scores: torch.Tensor, k: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Keeps the k keypoints with highest score"""
if k >= len(keypoints):
return keypoints, scores
scores, indices = torch.topk(scores, k, dim=0)
return keypoints[indices], scores
def simple_nms(scores: torch.Tensor, nms_radius: int) -> torch.Tensor:
"""Applies non-maximum suppression on scores"""
if nms_radius < 0:
raise ValueError("Expected positive values for nms_radius")
def max_pool(x):
return nn.functional.max_pool2d(x, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius)
zeros = torch.zeros_like(scores)
max_mask = scores == max_pool(scores)
for _ in range(2):
supp_mask = max_pool(max_mask.float()) > 0
supp_scores = torch.where(supp_mask, zeros, scores)
new_max_mask = supp_scores == max_pool(supp_scores)
max_mask = max_mask | (new_max_mask & (~supp_mask))
return torch.where(max_mask, scores, zeros)
@dataclass
class SuperPointKeypointDescriptionOutput(ModelOutput):
"""
Base class for outputs of image point description models. Due to the nature of keypoint detection, the number of
keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of images,
the maximum number of keypoints is set as the dimension of the keypoints, scores and descriptors tensors. The mask
tensor is used to indicate which values in the keypoints, scores and descriptors tensors are keypoint information
and which are padding.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Loss computed during training.
keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`):
Relative (x, y) coordinates of predicted keypoints in a given image.
scores (`torch.FloatTensor` of shape `(batch_size, num_keypoints)`):
Scores of predicted keypoints.
descriptors (`torch.FloatTensor` of shape `(batch_size, num_keypoints, descriptor_size)`):
Descriptors of predicted keypoints.
mask (`torch.BoolTensor` of shape `(batch_size, num_keypoints)`):
Mask indicating which values in keypoints, scores and descriptors are keypoint information.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or
when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
"""
loss: Optional[torch.FloatTensor] = None
keypoints: Optional[torch.IntTensor] = None
scores: Optional[torch.FloatTensor] = None
descriptors: Optional[torch.FloatTensor] = None
mask: Optional[torch.BoolTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class SuperPointConvBlock(nn.Module):
def __init__(
self, config: SuperPointConfig, in_channels: int, out_channels: int, add_pooling: bool = False
) -> None:
super().__init__()
self.conv_a = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.conv_b = nn.Conv2d(
out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) if add_pooling else None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.relu(self.conv_a(hidden_states))
hidden_states = self.relu(self.conv_b(hidden_states))
if self.pool is not None:
hidden_states = self.pool(hidden_states)
return hidden_states
class SuperPointEncoder(nn.Module):
"""
SuperPoint encoder module. It is made of 4 convolutional layers with ReLU activation and max pooling, reducing the
dimensionality of the image.
"""
def __init__(self, config: SuperPointConfig) -> None:
super().__init__()
# SuperPoint uses 1 channel images
self.input_dim = 1
conv_blocks = []
conv_blocks.append(
SuperPointConvBlock(config, self.input_dim, config.encoder_hidden_sizes[0], add_pooling=True)
)
for i in range(1, len(config.encoder_hidden_sizes) - 1):
conv_blocks.append(
SuperPointConvBlock(
config, config.encoder_hidden_sizes[i - 1], config.encoder_hidden_sizes[i], add_pooling=True
)
)
conv_blocks.append(
SuperPointConvBlock(
config, config.encoder_hidden_sizes[-2], config.encoder_hidden_sizes[-1], add_pooling=False
)
)
self.conv_blocks = nn.ModuleList(conv_blocks)
def forward(
self,
input,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for conv_block in self.conv_blocks:
input = conv_block(input)
if output_hidden_states:
all_hidden_states = all_hidden_states + (input,)
output = input
if not return_dict:
return tuple(v for v in [output, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=output,
hidden_states=all_hidden_states,
)
class SuperPointInterestPointDecoder(nn.Module):
"""
The SuperPointInterestPointDecoder uses the output of the SuperPointEncoder to compute the keypoint with scores.
The scores are first computed by a convolutional layer, then a softmax is applied to get a probability distribution
over the 65 possible keypoint classes. The keypoints are then extracted from the scores by thresholding and
non-maximum suppression. Post-processing is then applied to remove keypoints too close to the image borders as well
as to keep only the k keypoints with highest score.
"""
def __init__(self, config: SuperPointConfig) -> None:
super().__init__()
self.keypoint_threshold = config.keypoint_threshold
self.max_keypoints = config.max_keypoints
self.nms_radius = config.nms_radius
self.border_removal_distance = config.border_removal_distance
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv_score_a = nn.Conv2d(
config.encoder_hidden_sizes[-1],
config.decoder_hidden_size,
kernel_size=3,
stride=1,
padding=1,
)
self.conv_score_b = nn.Conv2d(
config.decoder_hidden_size, config.keypoint_decoder_dim, kernel_size=1, stride=1, padding=0
)
def forward(self, encoded: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
scores = self._get_pixel_scores(encoded)
keypoints, scores = self._extract_keypoints(scores)
return keypoints, scores
def _get_pixel_scores(self, encoded: torch.Tensor) -> torch.Tensor:
"""Based on the encoder output, compute the scores for each pixel of the image"""
scores = self.relu(self.conv_score_a(encoded))
scores = self.conv_score_b(scores)
scores = nn.functional.softmax(scores, 1)[:, :-1]
batch_size, _, height, width = scores.shape
scores = scores.permute(0, 2, 3, 1).reshape(batch_size, height, width, 8, 8)
scores = scores.permute(0, 1, 3, 2, 4).reshape(batch_size, height * 8, width * 8)
scores = simple_nms(scores, self.nms_radius)
return scores
def _extract_keypoints(self, scores: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Based on their scores, extract the pixels that represent the keypoints that will be used for descriptors computation"""
_, height, width = scores.shape
# Threshold keypoints by score value
keypoints = torch.nonzero(scores[0] > self.keypoint_threshold)
scores = scores[0][tuple(keypoints.t())]
# Discard keypoints near the image borders
keypoints, scores = remove_keypoints_from_borders(
keypoints, scores, self.border_removal_distance, height * 8, width * 8
)
# Keep the k keypoints with highest score
if self.max_keypoints >= 0:
keypoints, scores = top_k_keypoints(keypoints, scores, self.max_keypoints)
# Convert (y, x) to (x, y)
keypoints = torch.flip(keypoints, [1]).float()
return keypoints, scores
class SuperPointDescriptorDecoder(nn.Module):
"""
The SuperPointDescriptorDecoder uses the outputs of both the SuperPointEncoder and the
SuperPointInterestPointDecoder to compute the descriptors at the keypoints locations.
The descriptors are first computed by a convolutional layer, then normalized to have a norm of 1. The descriptors
are then interpolated at the keypoints locations.
"""
def __init__(self, config: SuperPointConfig) -> None:
super().__init__()
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv_descriptor_a = nn.Conv2d(
config.encoder_hidden_sizes[-1],
config.decoder_hidden_size,
kernel_size=3,
stride=1,
padding=1,
)
self.conv_descriptor_b = nn.Conv2d(
config.decoder_hidden_size,
config.descriptor_decoder_dim,
kernel_size=1,
stride=1,
padding=0,
)
def forward(self, encoded: torch.Tensor, keypoints: torch.Tensor) -> torch.Tensor:
"""Based on the encoder output and the keypoints, compute the descriptors for each keypoint"""
descriptors = self.conv_descriptor_b(self.relu(self.conv_descriptor_a(encoded)))
descriptors = nn.functional.normalize(descriptors, p=2, dim=1)
descriptors = self._sample_descriptors(keypoints[None], descriptors[0][None], 8)[0]
# [descriptor_dim, num_keypoints] -> [num_keypoints, descriptor_dim]
descriptors = torch.transpose(descriptors, 0, 1)
return descriptors
@staticmethod
def _sample_descriptors(keypoints, descriptors, scale: int = 8) -> torch.Tensor:
"""Interpolate descriptors at keypoint locations"""
batch_size, num_channels, height, width = descriptors.shape
keypoints = keypoints - scale / 2 + 0.5
divisor = torch.tensor([[(width * scale - scale / 2 - 0.5), (height * scale - scale / 2 - 0.5)]])
divisor = divisor.to(keypoints)
keypoints /= divisor
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
kwargs = {"align_corners": True} if is_torch_greater_or_equal_than_1_13 else {}
# [batch_size, num_channels, num_keypoints, 2] -> [batch_size, num_channels, num_keypoints, 2]
keypoints = keypoints.view(batch_size, 1, -1, 2)
descriptors = nn.functional.grid_sample(descriptors, keypoints, mode="bilinear", **kwargs)
# [batch_size, descriptor_decoder_dim, num_channels, num_keypoints] -> [batch_size, descriptor_decoder_dim, num_keypoints]
descriptors = descriptors.reshape(batch_size, num_channels, -1)
descriptors = nn.functional.normalize(descriptors, p=2, dim=1)
return descriptors
class SuperPointPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SuperPointConfig
base_model_prefix = "superpoint"
main_input_name = "pixel_values"
supports_gradient_checkpointing = False
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def extract_one_channel_pixel_values(self, pixel_values: torch.FloatTensor) -> torch.FloatTensor:
"""
Assuming pixel_values has shape (batch_size, 3, height, width), and that all channels values are the same,
extract the first channel value to get a tensor of shape (batch_size, 1, height, width) for SuperPoint. This is
a workaround for the issue discussed in :
https://github.com/huggingface/transformers/pull/25786#issuecomment-1730176446
Args:
pixel_values: torch.FloatTensor of shape (batch_size, 3, height, width)
Returns:
pixel_values: torch.FloatTensor of shape (batch_size, 1, height, width)
"""
return pixel_values[:, 0, :, :][:, None, :, :]
SUPERPOINT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SuperPointConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SUPERPOINT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`SuperPointImageProcessor`]. See
[`SuperPointImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more
detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"SuperPoint model outputting keypoints and descriptors.",
SUPERPOINT_START_DOCSTRING,
)
class SuperPointForKeypointDetection(SuperPointPreTrainedModel):
"""
SuperPoint model. It consists of a SuperPointEncoder, a SuperPointInterestPointDecoder and a
SuperPointDescriptorDecoder. SuperPoint was proposed in `SuperPoint: Self-Supervised Interest Point Detection and
Description <https://arxiv.org/abs/1712.07629>`__ by Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. It
is a fully convolutional neural network that extracts keypoints and descriptors from an image. It is trained in a
self-supervised manner, using a combination of a photometric loss and a loss based on the homographic adaptation of
keypoints. It is made of a convolutional encoder and two decoders: one for keypoints and one for descriptors.
"""
def __init__(self, config: SuperPointConfig) -> None:
super().__init__(config)
self.config = config
self.encoder = SuperPointEncoder(config)
self.keypoint_decoder = SuperPointInterestPointDecoder(config)
self.descriptor_decoder = SuperPointDescriptorDecoder(config)
self.post_init()
@add_start_docstrings_to_model_forward(SUPERPOINT_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SuperPointKeypointDescriptionOutput]:
"""
Examples:
```python
>>> from transformers import AutoImageProcessor, SuperPointForKeypointDetection
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superpoint")
>>> model = SuperPointForKeypointDetection.from_pretrained("magic-leap-community/superpoint")
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
loss = None
if labels is not None:
raise ValueError("SuperPoint does not support training for now.")
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
pixel_values = self.extract_one_channel_pixel_values(pixel_values)
batch_size = pixel_values.shape[0]
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
list_keypoints_scores = [
self.keypoint_decoder(last_hidden_state[None, ...]) for last_hidden_state in last_hidden_state
]
list_keypoints = [keypoints_scores[0] for keypoints_scores in list_keypoints_scores]
list_scores = [keypoints_scores[1] for keypoints_scores in list_keypoints_scores]
list_descriptors = [
self.descriptor_decoder(last_hidden_state[None, ...], keypoints[None, ...])
for last_hidden_state, keypoints in zip(last_hidden_state, list_keypoints)
]
maximum_num_keypoints = max(keypoints.shape[0] for keypoints in list_keypoints)
keypoints = torch.zeros((batch_size, maximum_num_keypoints, 2), device=pixel_values.device)
scores = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device)
descriptors = torch.zeros(
(batch_size, maximum_num_keypoints, self.config.descriptor_decoder_dim),
device=pixel_values.device,
)
mask = torch.zeros((batch_size, maximum_num_keypoints), device=pixel_values.device, dtype=torch.int)
for i, (_keypoints, _scores, _descriptors) in enumerate(zip(list_keypoints, list_scores, list_descriptors)):
keypoints[i, : _keypoints.shape[0]] = _keypoints
scores[i, : _scores.shape[0]] = _scores
descriptors[i, : _descriptors.shape[0]] = _descriptors
mask[i, : _scores.shape[0]] = 1
hidden_states = encoder_outputs[1] if output_hidden_states else None
if not return_dict:
return tuple(v for v in [loss, keypoints, scores, descriptors, mask, hidden_states] if v is not None)
return SuperPointKeypointDescriptionOutput(
loss=loss,
keypoints=keypoints,
scores=scores,
descriptors=descriptors,
mask=mask,
hidden_states=hidden_states,
)