450 lines
20 KiB
Python
450 lines
20 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 T5 Authors and HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Tokenization class for model T5."""
|
||
|
|
||
|
|
||
|
import os
|
||
|
import re
|
||
|
import warnings
|
||
|
from shutil import copyfile
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
||
|
|
||
|
import sentencepiece as spm
|
||
|
|
||
|
from ...convert_slow_tokenizer import import_protobuf
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...tokenization_utils_base import AddedToken
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ...tokenization_utils_base import TextInput
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
||
|
|
||
|
|
||
|
# TODO(PVP) - this should be removed in Transformers v5
|
||
|
|
||
|
SPIECE_UNDERLINE = "▁"
|
||
|
|
||
|
|
||
|
class T5Tokenizer(PreTrainedTokenizer):
|
||
|
"""
|
||
|
Construct a T5 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
||
|
|
||
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
||
|
this superclass for more information regarding those methods.
|
||
|
|
||
|
Args:
|
||
|
vocab_file (`str`):
|
||
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
||
|
contains the vocabulary necessary to instantiate a tokenizer.
|
||
|
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
||
|
The end of sequence token.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
||
|
The token used is the `sep_token`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
||
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
||
|
token instead.
|
||
|
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
||
|
The token used for padding, for example when batching sequences of different lengths.
|
||
|
extra_ids (`int`, *optional*, defaults to 100):
|
||
|
Add a number of extra ids added to the vocabulary for use as sentinels. These tokens are
|
||
|
accessible as "<extra_id_{%d}>" where "{%d}" is a number between 0 and extra_ids-1. These tokens can be
|
||
|
retrieved by calling get_sentinel_tokens method and token ids can be by calling get_sentinel_token_ids
|
||
|
method
|
||
|
additional_special_tokens (`List[str]`, *optional*):
|
||
|
Additional special tokens used by the tokenizer.
|
||
|
sp_model_kwargs (`dict`, *optional*):
|
||
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
||
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
||
|
to set:
|
||
|
|
||
|
- `enable_sampling`: Enable subword regularization.
|
||
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
||
|
|
||
|
- `nbest_size = {0,1}`: No sampling is performed.
|
||
|
- `nbest_size > 1`: samples from the nbest_size results.
|
||
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
||
|
using forward-filtering-and-backward-sampling algorithm.
|
||
|
|
||
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
||
|
BPE-dropout.
|
||
|
legacy (`bool`, *optional*):
|
||
|
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
|
||
|
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
|
||
|
example:
|
||
|
|
||
|
- `legacy=True`:
|
||
|
```python
|
||
|
>>> from transformers import T5Tokenizer
|
||
|
|
||
|
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True)
|
||
|
>>> tokenizer.encode("Hello <extra_id_0>.")
|
||
|
[8774, 32099, 3, 5, 1]
|
||
|
```
|
||
|
- `legacy=False`:
|
||
|
```python
|
||
|
>>> from transformers import T5Tokenizer
|
||
|
|
||
|
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False)
|
||
|
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
||
|
[8774, 32099, 5, 1]
|
||
|
```
|
||
|
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
|
||
|
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
||
|
other word.
|
||
|
|
||
|
Attributes:
|
||
|
sp_model (`SentencePieceProcessor`):
|
||
|
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
||
|
"""
|
||
|
|
||
|
vocab_files_names = VOCAB_FILES_NAMES
|
||
|
model_input_names = ["input_ids", "attention_mask"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_file,
|
||
|
eos_token="</s>",
|
||
|
unk_token="<unk>",
|
||
|
pad_token="<pad>",
|
||
|
extra_ids=100,
|
||
|
additional_special_tokens=None,
|
||
|
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
legacy=None,
|
||
|
add_prefix_space=True,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
||
|
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
||
|
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
||
|
|
||
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
||
|
|
||
|
self.vocab_file = vocab_file
|
||
|
self._extra_ids = extra_ids
|
||
|
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(vocab_file)
|
||
|
|
||
|
if additional_special_tokens is not None:
|
||
|
extra_tokens = [x for x in additional_special_tokens if "<extra_id_" in str(x)]
|
||
|
if len(extra_tokens) < 1:
|
||
|
additional_special_tokens += [f"<extra_id_{i}>" for i in range(extra_ids)]
|
||
|
elif extra_ids > 0 and extra_ids != len(extra_tokens):
|
||
|
raise ValueError(
|
||
|
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
|
||
|
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
|
||
|
" tokens"
|
||
|
)
|
||
|
else:
|
||
|
extra_tokens = [f"<extra_id_{i}>" for i in range(extra_ids)]
|
||
|
additional_special_tokens = extra_tokens
|
||
|
|
||
|
# for legacy purpose, we keep this. Will be removed and tests updated. (when `added_tokens_decoder` is not passed as kwargs)
|
||
|
self._added_tokens_decoder = {}
|
||
|
for i in range(len(extra_tokens)):
|
||
|
self._added_tokens_decoder[len(self.sp_model) - 1 + extra_ids - i] = AddedToken(
|
||
|
f"<extra_id_{i}>", single_word=False, lstrip=True, rstrip=True, special=True, normalized=False
|
||
|
)
|
||
|
|
||
|
if legacy is None:
|
||
|
logger.warning_once(
|
||
|
f"You are using the default legacy behaviour of the {self.__class__}. This is"
|
||
|
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
|
||
|
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
|
||
|
" means, and thoroughly read the reason why this was added as explained in"
|
||
|
" https://github.com/huggingface/transformers/pull/24565"
|
||
|
)
|
||
|
legacy = True
|
||
|
|
||
|
self.legacy = legacy
|
||
|
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
|
||
|
self.vocab_file = vocab_file
|
||
|
self._extra_ids = extra_ids
|
||
|
self.add_prefix_space = add_prefix_space
|
||
|
|
||
|
super().__init__(
|
||
|
eos_token=eos_token,
|
||
|
unk_token=unk_token,
|
||
|
pad_token=pad_token,
|
||
|
extra_ids=extra_ids,
|
||
|
additional_special_tokens=additional_special_tokens,
|
||
|
sp_model_kwargs=self.sp_model_kwargs,
|
||
|
legacy=legacy,
|
||
|
add_prefix_space=add_prefix_space,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
|
||
|
def get_spm_processor(self, from_slow=False):
|
||
|
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
if self.legacy or from_slow: # no dependency on protobuf
|
||
|
tokenizer.Load(self.vocab_file)
|
||
|
return tokenizer
|
||
|
|
||
|
with open(self.vocab_file, "rb") as f:
|
||
|
sp_model = f.read()
|
||
|
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
|
||
|
model = model_pb2.ModelProto.FromString(sp_model)
|
||
|
normalizer_spec = model_pb2.NormalizerSpec()
|
||
|
normalizer_spec.add_dummy_prefix = False
|
||
|
model.normalizer_spec.MergeFrom(normalizer_spec)
|
||
|
sp_model = model.SerializeToString()
|
||
|
tokenizer.LoadFromSerializedProto(sp_model)
|
||
|
return tokenizer
|
||
|
|
||
|
@staticmethod
|
||
|
def _eventually_correct_t5_max_length(pretrained_model_name_or_path, max_model_length, init_max_model_length):
|
||
|
if pretrained_model_name_or_path in T5Tokenizer.max_model_input_sizes:
|
||
|
deprecated_max_model_length = T5Tokenizer.max_model_input_sizes[pretrained_model_name_or_path]
|
||
|
if init_max_model_length is not None and init_max_model_length != max_model_length:
|
||
|
return init_max_model_length
|
||
|
elif init_max_model_length is None:
|
||
|
warnings.warn(
|
||
|
"This tokenizer was incorrectly instantiated with a model max length of"
|
||
|
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
|
||
|
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
|
||
|
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
|
||
|
f" {pretrained_model_name_or_path} automatically truncating your input to"
|
||
|
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
|
||
|
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
|
||
|
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
|
||
|
" instantiate this tokenizer with `model_max_length` set to your preferred value.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
|
||
|
return max_model_length
|
||
|
|
||
|
@property
|
||
|
def vocab_size(self):
|
||
|
return self.sp_model.get_piece_size()
|
||
|
|
||
|
def get_vocab(self):
|
||
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||
|
vocab.update(self.added_tokens_encoder)
|
||
|
return vocab
|
||
|
|
||
|
def get_special_tokens_mask(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
||
|
special tokens using the tokenizer `prepare_for_model` method.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of IDs.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the token list is already formatted with special tokens for the model.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
||
|
"""
|
||
|
if already_has_special_tokens:
|
||
|
return super().get_special_tokens_mask(
|
||
|
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
||
|
)
|
||
|
|
||
|
# normal case: some special tokens
|
||
|
if token_ids_1 is None:
|
||
|
return ([0] * len(token_ids_0)) + [1]
|
||
|
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
||
|
|
||
|
def get_sentinel_tokens(self):
|
||
|
return list(
|
||
|
set(filter(lambda x: bool(re.search(r"<extra_id_\d+>", x)) is not None, self.additional_special_tokens))
|
||
|
)
|
||
|
|
||
|
def get_sentinel_token_ids(self):
|
||
|
return [self.convert_tokens_to_ids(token) for token in self.get_sentinel_tokens()]
|
||
|
|
||
|
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
||
|
"""Do not add eos again if user already added it."""
|
||
|
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
||
|
warnings.warn(
|
||
|
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
||
|
" eos tokens being added."
|
||
|
)
|
||
|
return token_ids
|
||
|
else:
|
||
|
return token_ids + [self.eos_token_id]
|
||
|
|
||
|
def create_token_type_ids_from_sequences(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
||
|
use of token type ids, therefore a list of zeros is returned.
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of IDs.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: List of zeros.
|
||
|
"""
|
||
|
eos = [self.eos_token_id]
|
||
|
|
||
|
if token_ids_1 is None:
|
||
|
return len(token_ids_0 + eos) * [0]
|
||
|
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
||
|
|
||
|
def build_inputs_with_special_tokens(
|
||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||
|
) -> List[int]:
|
||
|
"""
|
||
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||
|
adding special tokens. A sequence has the following format:
|
||
|
|
||
|
- single sequence: `X </s>`
|
||
|
- pair of sequences: `A </s> B </s>`
|
||
|
|
||
|
Args:
|
||
|
token_ids_0 (`List[int]`):
|
||
|
List of IDs to which the special tokens will be added.
|
||
|
token_ids_1 (`List[int]`, *optional*):
|
||
|
Optional second list of IDs for sequence pairs.
|
||
|
|
||
|
Returns:
|
||
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||
|
"""
|
||
|
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
||
|
if token_ids_1 is None:
|
||
|
return token_ids_0
|
||
|
else:
|
||
|
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
||
|
return token_ids_0 + token_ids_1
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
state["sp_model"] = None
|
||
|
return state
|
||
|
|
||
|
def __setstate__(self, d):
|
||
|
self.__dict__ = d
|
||
|
|
||
|
# for backward compatibility
|
||
|
if not hasattr(self, "sp_model_kwargs"):
|
||
|
self.sp_model_kwargs = {}
|
||
|
|
||
|
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
||
|
self.sp_model.Load(self.vocab_file)
|
||
|
|
||
|
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
|
||
|
"""
|
||
|
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
|
||
|
first token is special.
|
||
|
"""
|
||
|
if self.legacy or len(text) == 0:
|
||
|
return super().tokenize(text, **kwargs)
|
||
|
|
||
|
text = text.replace(SPIECE_UNDERLINE, " ")
|
||
|
if self.add_prefix_space:
|
||
|
text = SPIECE_UNDERLINE + text
|
||
|
|
||
|
tokens = super().tokenize(text, **kwargs)
|
||
|
|
||
|
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
||
|
tokens = tokens[1:]
|
||
|
return tokens
|
||
|
|
||
|
@property
|
||
|
def unk_token_length(self):
|
||
|
return len(self.sp_model.encode(str(self.unk_token)))
|
||
|
|
||
|
def _tokenize(self, text, **kwargs):
|
||
|
"""
|
||
|
Returns a tokenized string.
|
||
|
|
||
|
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
||
|
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
|
||
|
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
|
||
|
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
||
|
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
||
|
"""
|
||
|
tokens = self.sp_model.encode(text, out_type=str)
|
||
|
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
|
||
|
return tokens
|
||
|
|
||
|
# 1. Encode string + prefix ex: "<unk> Hey"
|
||
|
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
||
|
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
||
|
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
||
|
|
||
|
def _convert_token_to_id(self, token):
|
||
|
"""Converts a token (str) in an id using the vocab."""
|
||
|
return self.sp_model.piece_to_id(token)
|
||
|
|
||
|
def _convert_id_to_token(self, index):
|
||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||
|
token = self.sp_model.IdToPiece(index)
|
||
|
return token
|
||
|
|
||
|
def convert_tokens_to_string(self, tokens):
|
||
|
"""Converts a sequence of tokens (string) in a single string."""
|
||
|
# since we manually add the prefix space, we have to remove it when decoding
|
||
|
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
|
||
|
tokens[0] = tokens[0][1:]
|
||
|
|
||
|
current_sub_tokens = []
|
||
|
out_string = ""
|
||
|
prev_is_special = False
|
||
|
for token in tokens:
|
||
|
# make sure that special tokens are not decoded using sentencepiece model
|
||
|
if token in self.all_special_tokens:
|
||
|
if not prev_is_special:
|
||
|
out_string += " "
|
||
|
out_string += self.sp_model.decode(current_sub_tokens) + token
|
||
|
prev_is_special = True
|
||
|
current_sub_tokens = []
|
||
|
else:
|
||
|
current_sub_tokens.append(token)
|
||
|
prev_is_special = False
|
||
|
out_string += self.sp_model.decode(current_sub_tokens)
|
||
|
return out_string.strip()
|
||
|
|
||
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||
|
if not os.path.isdir(save_directory):
|
||
|
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
||
|
return
|
||
|
out_vocab_file = os.path.join(
|
||
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
||
|
)
|
||
|
|
||
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||
|
copyfile(self.vocab_file, out_vocab_file)
|
||
|
elif not os.path.isfile(self.vocab_file):
|
||
|
with open(out_vocab_file, "wb") as fi:
|
||
|
content_spiece_model = self.sp_model.serialized_model_proto()
|
||
|
fi.write(content_spiece_model)
|
||
|
|
||
|
return (out_vocab_file,)
|