229 lines
12 KiB
Python
229 lines
12 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 Google Research and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
TAPAS configuration. Based on the BERT configuration with added parameters.
|
||
|
|
||
|
Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS:
|
||
|
|
||
|
- https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py
|
||
|
- https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ..deprecated._archive_maps import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class TapasConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the TAPAS
|
||
|
[google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture.
|
||
|
|
||
|
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original
|
||
|
implementation. Original implementation available at https://github.com/google-research/tapas/tree/master.
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 30522):
|
||
|
Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`TapasModel`].
|
||
|
hidden_size (`int`, *optional*, defaults to 768):
|
||
|
Dimensionality of the encoder layers and the pooler layer.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 12):
|
||
|
Number of hidden layers in the Transformer encoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 12):
|
||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||
|
intermediate_size (`int`, *optional*, defaults to 3072):
|
||
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
||
|
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
||
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||
|
`"relu"`, `"swish"` and `"gelu_new"` are supported.
|
||
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
||
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
||
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||
|
just in case (e.g., 512 or 1024 or 2048).
|
||
|
type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`):
|
||
|
The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`].
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
||
|
The epsilon used by the layer normalization layers.
|
||
|
positive_label_weight (`float`, *optional*, defaults to 10.0):
|
||
|
Weight for positive labels.
|
||
|
num_aggregation_labels (`int`, *optional*, defaults to 0):
|
||
|
The number of aggregation operators to predict.
|
||
|
aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
|
||
|
Importance weight for the aggregation loss.
|
||
|
use_answer_as_supervision (`bool`, *optional*):
|
||
|
Whether to use the answer as the only supervision for aggregation examples.
|
||
|
answer_loss_importance (`float`, *optional*, defaults to 1.0):
|
||
|
Importance weight for the regression loss.
|
||
|
use_normalized_answer_loss (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to normalize the answer loss by the maximum of the predicted and expected value.
|
||
|
huber_loss_delta (`float`, *optional*):
|
||
|
Delta parameter used to calculate the regression loss.
|
||
|
temperature (`float`, *optional*, defaults to 1.0):
|
||
|
Value used to control (OR change) the skewness of cell logits probabilities.
|
||
|
aggregation_temperature (`float`, *optional*, defaults to 1.0):
|
||
|
Scales aggregation logits to control the skewness of probabilities.
|
||
|
use_gumbel_for_cells (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply Gumbel-Softmax to cell selection.
|
||
|
use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply Gumbel-Softmax to aggregation selection.
|
||
|
average_approximation_function (`string`, *optional*, defaults to `"ratio"`):
|
||
|
Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`,
|
||
|
`"first_order"` or `"second_order"`.
|
||
|
cell_selection_preference (`float`, *optional*):
|
||
|
Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for
|
||
|
aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE"
|
||
|
operator) is higher than this hyperparameter, then aggregation is predicted for an example.
|
||
|
answer_loss_cutoff (`float`, *optional*):
|
||
|
Ignore examples with answer loss larger than cutoff.
|
||
|
max_num_rows (`int`, *optional*, defaults to 64):
|
||
|
Maximum number of rows.
|
||
|
max_num_columns (`int`, *optional*, defaults to 32):
|
||
|
Maximum number of columns.
|
||
|
average_logits_per_cell (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to average logits per cell.
|
||
|
select_one_column (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to constrain the model to only select cells from a single column.
|
||
|
allow_empty_column_selection (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to allow not to select any column.
|
||
|
init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%.
|
||
|
reset_position_index_per_cell (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to restart position indexes at every cell (i.e. use relative position embeddings).
|
||
|
disable_per_token_loss (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to disable any (strong or weak) supervision on cells.
|
||
|
aggregation_labels (`Dict[int, label]`, *optional*):
|
||
|
The aggregation labels used to aggregate the results. For example, the WTQ models have the following
|
||
|
aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}`
|
||
|
no_aggregation_label_index (`int`, *optional*):
|
||
|
If the aggregation labels are defined and one of these labels represents "No aggregation", this should be
|
||
|
set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value
|
||
|
should be set to 0 for these models.
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import TapasModel, TapasConfig
|
||
|
|
||
|
>>> # Initializing a default (SQA) Tapas configuration
|
||
|
>>> configuration = TapasConfig()
|
||
|
>>> # Initializing a model from the configuration
|
||
|
>>> model = TapasModel(configuration)
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "tapas"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=30522,
|
||
|
hidden_size=768,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
intermediate_size=3072,
|
||
|
hidden_act="gelu",
|
||
|
hidden_dropout_prob=0.1,
|
||
|
attention_probs_dropout_prob=0.1,
|
||
|
max_position_embeddings=1024,
|
||
|
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
|
||
|
initializer_range=0.02,
|
||
|
layer_norm_eps=1e-12,
|
||
|
pad_token_id=0,
|
||
|
positive_label_weight=10.0,
|
||
|
num_aggregation_labels=0,
|
||
|
aggregation_loss_weight=1.0,
|
||
|
use_answer_as_supervision=None,
|
||
|
answer_loss_importance=1.0,
|
||
|
use_normalized_answer_loss=False,
|
||
|
huber_loss_delta=None,
|
||
|
temperature=1.0,
|
||
|
aggregation_temperature=1.0,
|
||
|
use_gumbel_for_cells=False,
|
||
|
use_gumbel_for_aggregation=False,
|
||
|
average_approximation_function="ratio",
|
||
|
cell_selection_preference=None,
|
||
|
answer_loss_cutoff=None,
|
||
|
max_num_rows=64,
|
||
|
max_num_columns=32,
|
||
|
average_logits_per_cell=False,
|
||
|
select_one_column=True,
|
||
|
allow_empty_column_selection=False,
|
||
|
init_cell_selection_weights_to_zero=False,
|
||
|
reset_position_index_per_cell=True,
|
||
|
disable_per_token_loss=False,
|
||
|
aggregation_labels=None,
|
||
|
no_aggregation_label_index=None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
||
|
|
||
|
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.hidden_dropout_prob = hidden_dropout_prob
|
||
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.type_vocab_sizes = type_vocab_sizes
|
||
|
self.initializer_range = initializer_range
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
|
||
|
# Fine-tuning task hyperparameters
|
||
|
self.positive_label_weight = positive_label_weight
|
||
|
self.num_aggregation_labels = num_aggregation_labels
|
||
|
self.aggregation_loss_weight = aggregation_loss_weight
|
||
|
self.use_answer_as_supervision = use_answer_as_supervision
|
||
|
self.answer_loss_importance = answer_loss_importance
|
||
|
self.use_normalized_answer_loss = use_normalized_answer_loss
|
||
|
self.huber_loss_delta = huber_loss_delta
|
||
|
self.temperature = temperature
|
||
|
self.aggregation_temperature = aggregation_temperature
|
||
|
self.use_gumbel_for_cells = use_gumbel_for_cells
|
||
|
self.use_gumbel_for_aggregation = use_gumbel_for_aggregation
|
||
|
self.average_approximation_function = average_approximation_function
|
||
|
self.cell_selection_preference = cell_selection_preference
|
||
|
self.answer_loss_cutoff = answer_loss_cutoff
|
||
|
self.max_num_rows = max_num_rows
|
||
|
self.max_num_columns = max_num_columns
|
||
|
self.average_logits_per_cell = average_logits_per_cell
|
||
|
self.select_one_column = select_one_column
|
||
|
self.allow_empty_column_selection = allow_empty_column_selection
|
||
|
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
|
||
|
self.reset_position_index_per_cell = reset_position_index_per_cell
|
||
|
self.disable_per_token_loss = disable_per_token_loss
|
||
|
|
||
|
# Aggregation hyperparameters
|
||
|
self.aggregation_labels = aggregation_labels
|
||
|
self.no_aggregation_label_index = no_aggregation_label_index
|
||
|
|
||
|
if isinstance(self.aggregation_labels, dict):
|
||
|
self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
|