2389 lines
108 KiB
Python
2389 lines
108 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2020 Google Research and The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch TAPAS model."""
|
||
|
|
||
|
|
||
|
import enum
|
||
|
import math
|
||
|
import os
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import (
|
||
|
apply_chunking_to_forward,
|
||
|
find_pruneable_heads_and_indices,
|
||
|
is_torch_greater_or_equal_than_1_12,
|
||
|
prune_linear_layer,
|
||
|
)
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_tapas import TapasConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
if not is_torch_greater_or_equal_than_1_12:
|
||
|
logger.warning(
|
||
|
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
|
||
|
"TapasModel. Please upgrade torch."
|
||
|
)
|
||
|
|
||
|
_CONFIG_FOR_DOC = "TapasConfig"
|
||
|
_CHECKPOINT_FOR_DOC = "google/tapas-base"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
EPSILON_ZERO_DIVISION = 1e-10
|
||
|
CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class TableQuestionAnsweringOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`TapasForQuestionAnswering`].
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)):
|
||
|
Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the
|
||
|
semi-supervised regression loss and (optionally) supervised loss for aggregations.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Prediction scores of the cell selection head, for every token.
|
||
|
logits_aggregation (`torch.FloatTensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Prediction scores of the aggregation head, for every aggregation operator.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
|
||
|
plus the initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
|
||
|
the self-attention heads.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
logits_aggregation: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
|
||
|
|
||
|
def load_tf_weights_in_tapas(model, config, tf_checkpoint_path):
|
||
|
"""
|
||
|
Load tf checkpoints in a PyTorch model. This is an adaptation from load_tf_weights_in_bert
|
||
|
|
||
|
- add cell selection and aggregation heads
|
||
|
- take into account additional token type embedding layers
|
||
|
"""
|
||
|
try:
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import tensorflow as tf
|
||
|
except ImportError:
|
||
|
logger.error(
|
||
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
||
|
"https://www.tensorflow.org/install/ for installation instructions."
|
||
|
)
|
||
|
raise
|
||
|
tf_path = os.path.abspath(tf_checkpoint_path)
|
||
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
||
|
# Load weights from TF model
|
||
|
init_vars = tf.train.list_variables(tf_path)
|
||
|
names = []
|
||
|
arrays = []
|
||
|
for name, shape in init_vars:
|
||
|
logger.info(f"Loading TF weight {name} with shape {shape}")
|
||
|
array = tf.train.load_variable(tf_path, name)
|
||
|
names.append(name)
|
||
|
arrays.append(array)
|
||
|
|
||
|
for name, array in zip(names, arrays):
|
||
|
name = name.split("/")
|
||
|
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculate m and v
|
||
|
# which are not required for using pretrained model
|
||
|
if any(
|
||
|
n
|
||
|
in [
|
||
|
"adam_v",
|
||
|
"adam_m",
|
||
|
"AdamWeightDecayOptimizer",
|
||
|
"AdamWeightDecayOptimizer_1",
|
||
|
"global_step",
|
||
|
"seq_relationship",
|
||
|
]
|
||
|
for n in name
|
||
|
):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
# in case the model is TapasForSequenceClassification, we skip output_bias and output_weights
|
||
|
# since these are not used for classification
|
||
|
if isinstance(model, TapasForSequenceClassification):
|
||
|
if any(n in ["output_bias", "output_weights"] for n in name):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
# in case the model is TapasModel, we skip output_bias, output_weights, output_bias_cls and output_weights_cls
|
||
|
# since this model does not have MLM and NSP heads
|
||
|
if isinstance(model, TapasModel):
|
||
|
if any(n in ["output_bias", "output_weights", "output_bias_cls", "output_weights_cls"] for n in name):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
# in case the model is TapasForMaskedLM, we skip the pooler
|
||
|
if isinstance(model, TapasForMaskedLM):
|
||
|
if any(n in ["pooler"] for n in name):
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
# if first scope name starts with "bert", change it to "tapas"
|
||
|
if name[0] == "bert":
|
||
|
name[0] = "tapas"
|
||
|
pointer = model
|
||
|
for m_name in name:
|
||
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
||
|
scope_names = re.split(r"_(\d+)", m_name)
|
||
|
else:
|
||
|
scope_names = [m_name]
|
||
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif scope_names[0] == "beta":
|
||
|
pointer = getattr(pointer, "bias")
|
||
|
# cell selection heads
|
||
|
elif scope_names[0] == "output_bias":
|
||
|
if not isinstance(model, TapasForMaskedLM):
|
||
|
pointer = getattr(pointer, "output_bias")
|
||
|
else:
|
||
|
pointer = getattr(pointer, "bias")
|
||
|
elif scope_names[0] == "output_weights":
|
||
|
pointer = getattr(pointer, "output_weights")
|
||
|
elif scope_names[0] == "column_output_bias":
|
||
|
pointer = getattr(pointer, "column_output_bias")
|
||
|
elif scope_names[0] == "column_output_weights":
|
||
|
pointer = getattr(pointer, "column_output_weights")
|
||
|
# aggregation head
|
||
|
elif scope_names[0] == "output_bias_agg":
|
||
|
pointer = getattr(pointer, "aggregation_classifier")
|
||
|
pointer = getattr(pointer, "bias")
|
||
|
elif scope_names[0] == "output_weights_agg":
|
||
|
pointer = getattr(pointer, "aggregation_classifier")
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
# classification head
|
||
|
elif scope_names[0] == "output_bias_cls":
|
||
|
pointer = getattr(pointer, "classifier")
|
||
|
pointer = getattr(pointer, "bias")
|
||
|
elif scope_names[0] == "output_weights_cls":
|
||
|
pointer = getattr(pointer, "classifier")
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
else:
|
||
|
try:
|
||
|
pointer = getattr(pointer, scope_names[0])
|
||
|
except AttributeError:
|
||
|
logger.info(f"Skipping {'/'.join(name)}")
|
||
|
continue
|
||
|
if len(scope_names) >= 2:
|
||
|
num = int(scope_names[1])
|
||
|
pointer = pointer[num]
|
||
|
if m_name[-11:] == "_embeddings":
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif m_name[-13:] in [f"_embeddings_{i}" for i in range(7)]:
|
||
|
pointer = getattr(pointer, "weight")
|
||
|
elif m_name == "kernel":
|
||
|
array = np.transpose(array)
|
||
|
try:
|
||
|
if pointer.shape != array.shape:
|
||
|
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
||
|
except AssertionError as e:
|
||
|
e.args += (pointer.shape, array.shape)
|
||
|
raise
|
||
|
logger.info(f"Initialize PyTorch weight {name}")
|
||
|
# Added a check to see whether the array is a scalar (because bias terms in Tapas checkpoints can be
|
||
|
# scalar => should first be converted to numpy arrays)
|
||
|
if np.isscalar(array):
|
||
|
array = np.array(array)
|
||
|
pointer.data = torch.from_numpy(array)
|
||
|
return model
|
||
|
|
||
|
|
||
|
class TapasEmbeddings(nn.Module):
|
||
|
"""
|
||
|
Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of
|
||
|
additional token type embeddings to encode tabular structure.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
# we do not include config.disabled_features and config.disable_position_embeddings from the original implementation
|
||
|
# word embeddings
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
# position embeddings
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||
|
# token type embeddings
|
||
|
for i, type_vocab_sizes in enumerate(config.type_vocab_sizes):
|
||
|
name = f"token_type_embeddings_{i}"
|
||
|
setattr(self, name, nn.Embedding(type_vocab_sizes, config.hidden_size))
|
||
|
|
||
|
self.number_of_token_type_embeddings = len(config.type_vocab_sizes)
|
||
|
|
||
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
||
|
# any TensorFlow checkpoint file
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
self.config = config
|
||
|
|
||
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
seq_length = input_shape[1]
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if position_ids is None:
|
||
|
# create absolute position embeddings
|
||
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
||
|
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
||
|
# when self.config.reset_position_index_per_cell is set to True, create relative position embeddings
|
||
|
if self.config.reset_position_index_per_cell:
|
||
|
# shape (batch_size, seq_len)
|
||
|
col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1)
|
||
|
# shape (batch_size, seq_len)
|
||
|
row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1)
|
||
|
# shape (batch_size, seq_len)
|
||
|
full_index = ProductIndexMap(col_index, row_index)
|
||
|
# shape (max_rows * max_columns,). First absolute position for every cell
|
||
|
first_position_per_segment = reduce_min(position_ids, full_index)[0]
|
||
|
# ? shape (batch_size, seq_len). First absolute position of the cell for every token
|
||
|
first_position = gather(first_position_per_segment, full_index)
|
||
|
# shape (1, seq_len)
|
||
|
position = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0)
|
||
|
position_ids = torch.min(
|
||
|
torch.as_tensor(self.config.max_position_embeddings - 1, device=device), position - first_position
|
||
|
)
|
||
|
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(
|
||
|
(input_shape + self.number_of_token_type_embeddings), dtype=torch.long, device=device
|
||
|
)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
|
||
|
position_embeddings = self.position_embeddings(position_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + position_embeddings
|
||
|
|
||
|
for i in range(self.number_of_token_type_embeddings):
|
||
|
name = f"token_type_embeddings_{i}"
|
||
|
embeddings += getattr(self, name)(token_type_ids[:, :, i])
|
||
|
|
||
|
embeddings = self.LayerNorm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class TapasSelfAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size {config.hidden_size} is not a multiple of the number of attention "
|
||
|
f"heads {config.num_attention_heads}"
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
self.is_decoder = config.is_decoder
|
||
|
|
||
|
def transpose_for_scores(self, x):
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
encoder_hidden_states=None,
|
||
|
encoder_attention_mask=None,
|
||
|
past_key_value=None,
|
||
|
output_attentions=False,
|
||
|
):
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
|
||
|
# If this is instantiated as a cross-attention module, the keys
|
||
|
# and values come from an encoder; the attention mask needs to be
|
||
|
# such that the encoder's padding tokens are not attended to.
|
||
|
is_cross_attention = encoder_hidden_states is not None
|
||
|
|
||
|
if is_cross_attention and past_key_value is not None:
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_layer = past_key_value[0]
|
||
|
value_layer = past_key_value[1]
|
||
|
attention_mask = encoder_attention_mask
|
||
|
elif is_cross_attention:
|
||
|
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
||
|
attention_mask = encoder_attention_mask
|
||
|
elif past_key_value is not None:
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
||
|
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
||
|
else:
|
||
|
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
||
|
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
||
|
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
past_key_value = (key_layer, value_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
if attention_mask is not None:
|
||
|
# Apply the attention mask is (precomputed for all layers in TapasModel forward() function)
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
|
||
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
||
|
if self.is_decoder:
|
||
|
outputs = outputs + (past_key_value,)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
|
||
|
class TapasSelfOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class TapasAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.self = TapasSelfAttention(config)
|
||
|
self.output = TapasSelfOutput(config)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads
|
||
|
def prune_heads(self, heads):
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
heads, index = find_pruneable_heads_and_indices(
|
||
|
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
||
|
)
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.self.query = prune_linear_layer(self.self.query, index)
|
||
|
self.self.key = prune_linear_layer(self.self.key, index)
|
||
|
self.self.value = prune_linear_layer(self.self.value, index)
|
||
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
||
|
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertAttention.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
self_outputs = self.self(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
attention_output = self.output(self_outputs[0], hidden_states)
|
||
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
|
||
|
class TapasIntermediate(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertOutput
|
||
|
class TapasOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class TapasLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
||
|
self.seq_len_dim = 1
|
||
|
self.attention = TapasAttention(config)
|
||
|
self.is_decoder = config.is_decoder
|
||
|
self.add_cross_attention = config.add_cross_attention
|
||
|
if self.add_cross_attention:
|
||
|
if not self.is_decoder:
|
||
|
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
||
|
self.crossattention = TapasAttention(config)
|
||
|
self.intermediate = TapasIntermediate(config)
|
||
|
self.output = TapasOutput(config)
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertLayer.forward
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||
|
output_attentions: Optional[bool] = False,
|
||
|
) -> Tuple[torch.Tensor]:
|
||
|
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
||
|
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
past_key_value=self_attn_past_key_value,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
|
||
|
# if decoder, the last output is tuple of self-attn cache
|
||
|
if self.is_decoder:
|
||
|
outputs = self_attention_outputs[1:-1]
|
||
|
present_key_value = self_attention_outputs[-1]
|
||
|
else:
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
cross_attn_present_key_value = None
|
||
|
if self.is_decoder and encoder_hidden_states is not None:
|
||
|
if not hasattr(self, "crossattention"):
|
||
|
raise ValueError(
|
||
|
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
||
|
" by setting `config.add_cross_attention=True`"
|
||
|
)
|
||
|
|
||
|
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
||
|
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
||
|
cross_attention_outputs = self.crossattention(
|
||
|
attention_output,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
cross_attn_past_key_value,
|
||
|
output_attentions,
|
||
|
)
|
||
|
attention_output = cross_attention_outputs[0]
|
||
|
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
||
|
|
||
|
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
||
|
cross_attn_present_key_value = cross_attention_outputs[-1]
|
||
|
present_key_value = present_key_value + cross_attn_present_key_value
|
||
|
|
||
|
layer_output = apply_chunking_to_forward(
|
||
|
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
||
|
)
|
||
|
outputs = (layer_output,) + outputs
|
||
|
|
||
|
# if decoder, return the attn key/values as the last output
|
||
|
if self.is_decoder:
|
||
|
outputs = outputs + (present_key_value,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk
|
||
|
def feed_forward_chunk(self, attention_output):
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
return layer_output
|
||
|
|
||
|
|
||
|
class TapasEncoder(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([TapasLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
encoder_hidden_states=None,
|
||
|
encoder_attention_mask=None,
|
||
|
past_key_values=None,
|
||
|
use_cache=None,
|
||
|
output_attentions=False,
|
||
|
output_hidden_states=False,
|
||
|
return_dict=True,
|
||
|
):
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_attentions = () if output_attentions else None
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_values,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
layer_head_mask,
|
||
|
encoder_hidden_states,
|
||
|
encoder_attention_mask,
|
||
|
past_key_values,
|
||
|
output_attentions,
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertPooler
|
||
|
class TapasPooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Tapas
|
||
|
class TapasPredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Tapas
|
||
|
class TapasLMPredictionHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.transform = TapasPredictionHeadTransform(config)
|
||
|
|
||
|
# The output weights are the same as the input embeddings, but there is
|
||
|
# an output-only bias for each token.
|
||
|
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||
|
|
||
|
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
||
|
|
||
|
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
||
|
self.decoder.bias = self.bias
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.transform(hidden_states)
|
||
|
hidden_states = self.decoder(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Tapas
|
||
|
class TapasOnlyMLMHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.predictions = TapasLMPredictionHead(config)
|
||
|
|
||
|
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
||
|
prediction_scores = self.predictions(sequence_output)
|
||
|
return prediction_scores
|
||
|
|
||
|
|
||
|
class TapasPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = TapasConfig
|
||
|
base_model_prefix = "tapas"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, nn.Linear):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.Embedding):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
if module.padding_idx is not None:
|
||
|
module.weight.data[module.padding_idx].zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
|
||
|
TAPAS_START_DOCSTRING = r"""
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads
|
||
|
etc.)
|
||
|
|
||
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
||
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
||
|
and behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`TapasConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
TAPAS_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
|
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
||
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
token_type_ids (`torch.LongTensor` of shape `({0}, 7)`, *optional*):
|
||
|
Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this
|
||
|
class for more info.
|
||
|
|
||
|
[What are token type IDs?](../glossary#token-type-ids)
|
||
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
|
Indices of positions of each input sequence tokens in the position embeddings. If
|
||
|
`reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be
|
||
|
used. Selected in the range `[0, config.max_position_embeddings - 1]`.
|
||
|
|
||
|
[What are position IDs?](../glossary#position-ids)
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1
|
||
|
indicates the head is **not masked**, - 0 indicates the head is **masked**.
|
||
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
||
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
||
|
model's internal embedding lookup matrix.
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
TAPAS_START_DOCSTRING,
|
||
|
)
|
||
|
class TapasModel(TapasPreTrainedModel):
|
||
|
"""
|
||
|
This class is a small change compared to [`BertModel`], taking into account the additional token type ids.
|
||
|
|
||
|
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
||
|
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
||
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
||
|
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config, add_pooling_layer=True):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = TapasEmbeddings(config)
|
||
|
self.encoder = TapasEncoder(config)
|
||
|
|
||
|
self.pooler = TapasPooler(config) if add_pooling_layer else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embeddings.word_embeddings = value
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, TapasModel
|
||
|
>>> import pandas as pd
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
|
||
|
>>> model = TapasModel.from_pretrained("google/tapas-base")
|
||
|
|
||
|
>>> data = {
|
||
|
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
|
||
|
... "Age": ["56", "45", "59"],
|
||
|
... "Number of movies": ["87", "53", "69"],
|
||
|
... }
|
||
|
>>> table = pd.DataFrame.from_dict(data)
|
||
|
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
|
||
|
|
||
|
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> last_hidden_states = outputs.last_hidden_state
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if input_ids is not None and inputs_embeds is not None:
|
||
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
|
elif input_ids is not None:
|
||
|
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
||
|
input_shape = input_ids.size()
|
||
|
elif inputs_embeds is not None:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
else:
|
||
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=device)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(
|
||
|
(*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device
|
||
|
)
|
||
|
|
||
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
||
|
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
||
|
|
||
|
# If a 2D ou 3D attention mask is provided for the cross-attention
|
||
|
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
|
||
|
if self.config.is_decoder and encoder_hidden_states is not None:
|
||
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
||
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
||
|
if encoder_attention_mask is None:
|
||
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
||
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
||
|
else:
|
||
|
encoder_extended_attention_mask = None
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(
|
||
|
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
|
||
|
)
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
attention_mask=extended_attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_extended_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=sequence_output,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING)
|
||
|
class TapasForMaskedLM(TapasPreTrainedModel):
|
||
|
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
|
||
|
config_class = TapasConfig
|
||
|
base_model_prefix = "tapas"
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.tapas = TapasModel(config, add_pooling_layer=False)
|
||
|
self.cls = TapasOnlyMLMHead(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.cls.predictions.decoder
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.cls.predictions.decoder = new_embeddings
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
||
|
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
**kwargs,
|
||
|
) -> Union[Tuple, MaskedLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
||
|
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
||
|
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, TapasForMaskedLM
|
||
|
>>> import pandas as pd
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base")
|
||
|
>>> model = TapasForMaskedLM.from_pretrained("google/tapas-base")
|
||
|
|
||
|
>>> data = {
|
||
|
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
|
||
|
... "Age": ["56", "45", "59"],
|
||
|
... "Number of movies": ["87", "53", "69"],
|
||
|
... }
|
||
|
>>> table = pd.DataFrame.from_dict(data)
|
||
|
|
||
|
>>> inputs = tokenizer(
|
||
|
... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt"
|
||
|
... )
|
||
|
>>> labels = tokenizer(
|
||
|
... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt"
|
||
|
... )["input_ids"]
|
||
|
|
||
|
>>> outputs = model(**inputs, labels=labels)
|
||
|
>>> logits = outputs.logits
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.tapas(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
prediction_scores = self.cls(sequence_output)
|
||
|
|
||
|
masked_lm_loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
||
|
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (prediction_scores,) + outputs[2:]
|
||
|
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
||
|
|
||
|
return MaskedLMOutput(
|
||
|
loss=masked_lm_loss,
|
||
|
logits=prediction_scores,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables
|
||
|
(linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for
|
||
|
SQA, WTQ or WikiSQL-supervised tasks.
|
||
|
""",
|
||
|
TAPAS_START_DOCSTRING,
|
||
|
)
|
||
|
class TapasForQuestionAnswering(TapasPreTrainedModel):
|
||
|
def __init__(self, config: TapasConfig):
|
||
|
super().__init__(config)
|
||
|
|
||
|
# base model
|
||
|
self.tapas = TapasModel(config)
|
||
|
|
||
|
# dropout (only used when training)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
# cell selection heads
|
||
|
if config.init_cell_selection_weights_to_zero:
|
||
|
# init_cell_selection_weights_to_zero: Whether the initial weights should be
|
||
|
# set to 0. This ensures that all tokens have the same prior probability.
|
||
|
self.output_weights = nn.Parameter(torch.zeros(config.hidden_size))
|
||
|
self.column_output_weights = nn.Parameter(torch.zeros(config.hidden_size))
|
||
|
else:
|
||
|
self.output_weights = nn.Parameter(torch.empty(config.hidden_size))
|
||
|
nn.init.normal_(
|
||
|
self.output_weights, std=config.initializer_range
|
||
|
) # here, a truncated normal is used in the original implementation
|
||
|
self.column_output_weights = nn.Parameter(torch.empty(config.hidden_size))
|
||
|
nn.init.normal_(
|
||
|
self.column_output_weights, std=config.initializer_range
|
||
|
) # here, a truncated normal is used in the original implementation
|
||
|
self.output_bias = nn.Parameter(torch.zeros([]))
|
||
|
self.column_output_bias = nn.Parameter(torch.zeros([]))
|
||
|
|
||
|
# aggregation head
|
||
|
if config.num_aggregation_labels > 0:
|
||
|
self.aggregation_classifier = nn.Linear(config.hidden_size, config.num_aggregation_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
table_mask: Optional[torch.LongTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
aggregation_labels: Optional[torch.LongTensor] = None,
|
||
|
float_answer: Optional[torch.FloatTensor] = None,
|
||
|
numeric_values: Optional[torch.FloatTensor] = None,
|
||
|
numeric_values_scale: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TableQuestionAnsweringOutput]:
|
||
|
r"""
|
||
|
table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
|
||
|
Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and
|
||
|
padding are 0.
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
|
||
|
Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the
|
||
|
answer appearing in the table. Can be obtained using [`AutoTokenizer`].
|
||
|
|
||
|
- 1 for tokens that are **part of the answer**,
|
||
|
- 0 for tokens that are **not part of the answer**.
|
||
|
|
||
|
aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
||
|
Aggregation function index for every example in the batch for computing the aggregation loss. Indices
|
||
|
should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for
|
||
|
aggregation (WikiSQL-supervised).
|
||
|
float_answer (`torch.FloatTensor` of shape `(batch_size, )`, *optional*):
|
||
|
Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only
|
||
|
required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss.
|
||
|
numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*):
|
||
|
Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using
|
||
|
[`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the
|
||
|
regression loss.
|
||
|
numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*):
|
||
|
Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case
|
||
|
of weak supervision for aggregation (WTQ) to calculate the regression loss.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, TapasForQuestionAnswering
|
||
|
>>> import pandas as pd
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
|
||
|
>>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
|
||
|
|
||
|
>>> data = {
|
||
|
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
|
||
|
... "Age": ["56", "45", "59"],
|
||
|
... "Number of movies": ["87", "53", "69"],
|
||
|
... }
|
||
|
>>> table = pd.DataFrame.from_dict(data)
|
||
|
>>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"]
|
||
|
|
||
|
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
|
||
|
>>> outputs = model(**inputs)
|
||
|
|
||
|
>>> logits = outputs.logits
|
||
|
>>> logits_aggregation = outputs.logits_aggregation
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.tapas(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
sequence_output = outputs[0]
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
sequence_output = self.dropout(sequence_output)
|
||
|
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
|
||
|
# Construct indices for the table.
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(
|
||
|
(*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device
|
||
|
)
|
||
|
|
||
|
token_types = [
|
||
|
"segment_ids",
|
||
|
"column_ids",
|
||
|
"row_ids",
|
||
|
"prev_labels",
|
||
|
"column_ranks",
|
||
|
"inv_column_ranks",
|
||
|
"numeric_relations",
|
||
|
]
|
||
|
|
||
|
row_ids = token_type_ids[:, :, token_types.index("row_ids")]
|
||
|
column_ids = token_type_ids[:, :, token_types.index("column_ids")]
|
||
|
|
||
|
row_index = IndexMap(
|
||
|
indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)),
|
||
|
num_segments=self.config.max_num_rows,
|
||
|
batch_dims=1,
|
||
|
)
|
||
|
col_index = IndexMap(
|
||
|
indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)),
|
||
|
num_segments=self.config.max_num_columns,
|
||
|
batch_dims=1,
|
||
|
)
|
||
|
cell_index = ProductIndexMap(row_index, col_index)
|
||
|
|
||
|
# Masks.
|
||
|
input_shape = input_ids.size() if input_ids is not None else inputs_embeds.size()[:-1]
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
if attention_mask is None:
|
||
|
attention_mask = torch.ones(input_shape, device=device)
|
||
|
# Table cells only, without question tokens and table headers.
|
||
|
if table_mask is None:
|
||
|
table_mask = torch.where(row_ids > 0, torch.ones_like(row_ids), torch.zeros_like(row_ids))
|
||
|
# torch.FloatTensor[batch_size, seq_length]
|
||
|
input_mask_float = attention_mask.float().to(device)
|
||
|
table_mask_float = table_mask.float().to(device)
|
||
|
# Mask for cells that exist in the table (i.e. that are not padding).
|
||
|
cell_mask, _ = reduce_mean(input_mask_float, cell_index)
|
||
|
|
||
|
# Compute logits per token. These are used to select individual cells.
|
||
|
logits = compute_token_logits(sequence_output, self.config.temperature, self.output_weights, self.output_bias)
|
||
|
|
||
|
# Compute logits per column. These are used to select a column.
|
||
|
column_logits = None
|
||
|
if self.config.select_one_column:
|
||
|
column_logits = compute_column_logits(
|
||
|
sequence_output,
|
||
|
self.column_output_weights,
|
||
|
self.column_output_bias,
|
||
|
cell_index,
|
||
|
cell_mask,
|
||
|
self.config.allow_empty_column_selection,
|
||
|
)
|
||
|
|
||
|
# Aggregation logits
|
||
|
logits_aggregation = None
|
||
|
if self.config.num_aggregation_labels > 0:
|
||
|
logits_aggregation = self.aggregation_classifier(pooled_output)
|
||
|
|
||
|
# Total loss calculation
|
||
|
total_loss = 0.0
|
||
|
calculate_loss = False
|
||
|
if labels is not None:
|
||
|
calculate_loss = True
|
||
|
is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision
|
||
|
|
||
|
# Semi-supervised cell selection in case of no aggregation:
|
||
|
# If the answer (the denotation) appears directly in the table we might
|
||
|
# select the answer without applying any aggregation function. There are
|
||
|
# some ambiguous cases, see utils._calculate_aggregate_mask for more info.
|
||
|
# `aggregate_mask` is 1 for examples where we chose to aggregate and 0
|
||
|
# for examples where we chose to select the answer directly.
|
||
|
# `labels` encodes the positions of the answer appearing in the table.
|
||
|
if is_supervised:
|
||
|
aggregate_mask = None
|
||
|
else:
|
||
|
if float_answer is not None:
|
||
|
assert (
|
||
|
labels.shape[0] == float_answer.shape[0]
|
||
|
), "Make sure the answers are a FloatTensor of shape (batch_size,)"
|
||
|
# <float32>[batch_size]
|
||
|
aggregate_mask = _calculate_aggregate_mask(
|
||
|
float_answer,
|
||
|
pooled_output,
|
||
|
self.config.cell_selection_preference,
|
||
|
labels,
|
||
|
self.aggregation_classifier,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError("You have to specify float answers in order to calculate the aggregate mask")
|
||
|
|
||
|
# Cell selection log-likelihood
|
||
|
if self.config.average_logits_per_cell:
|
||
|
logits_per_cell, _ = reduce_mean(logits, cell_index)
|
||
|
logits = gather(logits_per_cell, cell_index)
|
||
|
dist_per_token = torch.distributions.Bernoulli(logits=logits)
|
||
|
|
||
|
# Compute cell selection loss per example.
|
||
|
selection_loss_per_example = None
|
||
|
if not self.config.select_one_column:
|
||
|
weight = torch.where(
|
||
|
labels == 0,
|
||
|
torch.ones_like(labels, dtype=torch.float32),
|
||
|
self.config.positive_label_weight * torch.ones_like(labels, dtype=torch.float32),
|
||
|
)
|
||
|
selection_loss_per_token = -dist_per_token.log_prob(labels) * weight
|
||
|
selection_loss_per_example = torch.sum(selection_loss_per_token * input_mask_float, dim=1) / (
|
||
|
torch.sum(input_mask_float, dim=1) + EPSILON_ZERO_DIVISION
|
||
|
)
|
||
|
else:
|
||
|
selection_loss_per_example, logits = _single_column_cell_selection_loss(
|
||
|
logits, column_logits, labels, cell_index, col_index, cell_mask
|
||
|
)
|
||
|
dist_per_token = torch.distributions.Bernoulli(logits=logits)
|
||
|
|
||
|
# Supervised cell selection
|
||
|
if self.config.disable_per_token_loss:
|
||
|
pass
|
||
|
elif is_supervised:
|
||
|
total_loss += torch.mean(selection_loss_per_example)
|
||
|
else:
|
||
|
# For the not supervised case, do not assign loss for cell selection
|
||
|
total_loss += torch.mean(selection_loss_per_example * (1.0 - aggregate_mask))
|
||
|
|
||
|
# Semi-supervised regression loss and supervised loss for aggregations
|
||
|
if self.config.num_aggregation_labels > 0:
|
||
|
if is_supervised:
|
||
|
# Note that `aggregate_mask` is None if the setting is supervised.
|
||
|
if aggregation_labels is not None:
|
||
|
assert (
|
||
|
labels.shape[0] == aggregation_labels.shape[0]
|
||
|
), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)"
|
||
|
per_example_additional_loss = _calculate_aggregation_loss(
|
||
|
logits_aggregation,
|
||
|
aggregate_mask,
|
||
|
aggregation_labels,
|
||
|
self.config.use_answer_as_supervision,
|
||
|
self.config.num_aggregation_labels,
|
||
|
self.config.aggregation_loss_weight,
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You have to specify aggregation labels in order to calculate the aggregation loss"
|
||
|
)
|
||
|
else:
|
||
|
# Set aggregation labels to zeros
|
||
|
aggregation_labels = torch.zeros(labels.shape[0], dtype=torch.long, device=labels.device)
|
||
|
per_example_additional_loss = _calculate_aggregation_loss(
|
||
|
logits_aggregation,
|
||
|
aggregate_mask,
|
||
|
aggregation_labels,
|
||
|
self.config.use_answer_as_supervision,
|
||
|
self.config.num_aggregation_labels,
|
||
|
self.config.aggregation_loss_weight,
|
||
|
)
|
||
|
|
||
|
if self.config.use_answer_as_supervision:
|
||
|
if numeric_values is not None and numeric_values_scale is not None:
|
||
|
assert numeric_values.shape == numeric_values_scale.shape
|
||
|
# Add regression loss for numeric answers which require aggregation.
|
||
|
answer_loss, large_answer_loss_mask = _calculate_regression_loss(
|
||
|
float_answer,
|
||
|
aggregate_mask,
|
||
|
dist_per_token,
|
||
|
numeric_values,
|
||
|
numeric_values_scale,
|
||
|
table_mask_float,
|
||
|
logits_aggregation,
|
||
|
self.config,
|
||
|
)
|
||
|
per_example_additional_loss += answer_loss
|
||
|
# Zero loss for examples with answer_loss > cutoff.
|
||
|
per_example_additional_loss *= large_answer_loss_mask
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You have to specify numeric values and numeric values scale in order to calculate the"
|
||
|
" regression loss"
|
||
|
)
|
||
|
|
||
|
total_loss += torch.mean(per_example_additional_loss)
|
||
|
|
||
|
else:
|
||
|
# if no label ids are provided, set them to zeros in order to properly compute logits
|
||
|
labels = torch.zeros_like(logits)
|
||
|
_, logits = _single_column_cell_selection_loss(
|
||
|
logits, column_logits, labels, cell_index, col_index, cell_mask
|
||
|
)
|
||
|
if not return_dict:
|
||
|
output = (logits, logits_aggregation) + outputs[2:]
|
||
|
return ((total_loss,) + output) if calculate_loss else output
|
||
|
|
||
|
return TableQuestionAnsweringOutput(
|
||
|
loss=total_loss if calculate_loss else None,
|
||
|
logits=logits,
|
||
|
logits_aggregation=logits_aggregation,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table
|
||
|
entailment tasks, such as TabFact (Chen et al., 2020).
|
||
|
""",
|
||
|
TAPAS_START_DOCSTRING,
|
||
|
)
|
||
|
class TapasForSequenceClassification(TapasPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.tapas = TapasModel(config)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
|
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||
|
position_ids: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||
|
labels: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called
|
||
|
"classification_class_index" in the original implementation.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoTokenizer, TapasForSequenceClassification
|
||
|
>>> import torch
|
||
|
>>> import pandas as pd
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact")
|
||
|
>>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact")
|
||
|
|
||
|
>>> data = {
|
||
|
... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
|
||
|
... "Age": ["56", "45", "59"],
|
||
|
... "Number of movies": ["87", "53", "69"],
|
||
|
... }
|
||
|
>>> table = pd.DataFrame.from_dict(data)
|
||
|
>>> queries = [
|
||
|
... "There is only one actor who is 45 years old",
|
||
|
... "There are 3 actors which played in more than 60 movies",
|
||
|
... ]
|
||
|
|
||
|
>>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt")
|
||
|
>>> labels = torch.tensor([1, 0]) # 1 means entailed, 0 means refuted
|
||
|
|
||
|
>>> outputs = model(**inputs, labels=labels)
|
||
|
>>> loss = outputs.loss
|
||
|
>>> logits = outputs.logits
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.tapas(
|
||
|
input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
token_type_ids=token_type_ids,
|
||
|
position_ids=position_ids,
|
||
|
head_mask=head_mask,
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
pooled_output = outputs[1]
|
||
|
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
logits = self.classifier(pooled_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if self.config.problem_type is None:
|
||
|
if self.num_labels == 1:
|
||
|
self.config.problem_type = "regression"
|
||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||
|
self.config.problem_type = "single_label_classification"
|
||
|
else:
|
||
|
self.config.problem_type = "multi_label_classification"
|
||
|
|
||
|
if self.config.problem_type == "regression":
|
||
|
loss_fct = MSELoss()
|
||
|
if self.num_labels == 1:
|
||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||
|
else:
|
||
|
loss = loss_fct(logits, labels)
|
||
|
elif self.config.problem_type == "single_label_classification":
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||
|
elif self.config.problem_type == "multi_label_classification":
|
||
|
loss_fct = BCEWithLogitsLoss()
|
||
|
loss = loss_fct(logits, labels)
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
""" TAPAS utilities."""
|
||
|
|
||
|
|
||
|
class AverageApproximationFunction(str, enum.Enum):
|
||
|
RATIO = "ratio"
|
||
|
FIRST_ORDER = "first_order"
|
||
|
SECOND_ORDER = "second_order"
|
||
|
|
||
|
|
||
|
# Beginning of everything related to segmented tensors
|
||
|
|
||
|
|
||
|
class IndexMap(object):
|
||
|
"""Index grouping entries within a tensor."""
|
||
|
|
||
|
def __init__(self, indices, num_segments, batch_dims=0):
|
||
|
"""
|
||
|
Creates an index
|
||
|
|
||
|
Args:
|
||
|
indices (`torch.LongTensor`, same shape as a *values* Tensor to which the indices refer):
|
||
|
Tensor containing the indices.
|
||
|
num_segments (`torch.LongTensor`):
|
||
|
Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same
|
||
|
number of segments (although many segments can be empty).
|
||
|
batch_dims (`int`, *optional*, defaults to 0):
|
||
|
The number of batch dimensions. The first *batch_dims* dimensions of a SegmentedTensor are treated as
|
||
|
batch dimensions. Segments in different batch elements are always distinct even if they have the same
|
||
|
index.
|
||
|
"""
|
||
|
self.indices = torch.as_tensor(indices)
|
||
|
self.num_segments = torch.as_tensor(num_segments, device=indices.device)
|
||
|
self.batch_dims = batch_dims
|
||
|
|
||
|
def batch_shape(self):
|
||
|
return self.indices.size()[: self.batch_dims] # returns a torch.Size object
|
||
|
|
||
|
|
||
|
class ProductIndexMap(IndexMap):
|
||
|
"""The product of two indices."""
|
||
|
|
||
|
def __init__(self, outer_index, inner_index):
|
||
|
"""
|
||
|
Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the
|
||
|
intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows
|
||
|
and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation
|
||
|
combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to
|
||
|
*outer_index.num_segments* * *inner_index.num_segments*
|
||
|
|
||
|
Args:
|
||
|
outer_index (`IndexMap`):
|
||
|
IndexMap.
|
||
|
inner_index (`IndexMap`):
|
||
|
IndexMap, must have the same shape as *outer_index*.
|
||
|
"""
|
||
|
if outer_index.batch_dims != inner_index.batch_dims:
|
||
|
raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.")
|
||
|
|
||
|
super().__init__(
|
||
|
indices=(inner_index.indices + outer_index.indices * inner_index.num_segments),
|
||
|
num_segments=inner_index.num_segments * outer_index.num_segments,
|
||
|
batch_dims=inner_index.batch_dims,
|
||
|
)
|
||
|
self.outer_index = outer_index
|
||
|
self.inner_index = inner_index
|
||
|
|
||
|
def project_outer(self, index):
|
||
|
"""Projects an index with the same index set onto the outer components."""
|
||
|
indices = torch.div(index.indices, self.inner_index.num_segments, rounding_mode="floor").type(torch.long)
|
||
|
return IndexMap(indices=indices, num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims)
|
||
|
|
||
|
def project_inner(self, index):
|
||
|
"""Projects an index with the same index set onto the inner components."""
|
||
|
return IndexMap(
|
||
|
indices=torch.fmod(index.indices, self.inner_index.num_segments)
|
||
|
.type(torch.float)
|
||
|
.floor()
|
||
|
.type(torch.long),
|
||
|
num_segments=self.inner_index.num_segments,
|
||
|
batch_dims=index.batch_dims,
|
||
|
)
|
||
|
|
||
|
|
||
|
def gather(values, index, name="segmented_gather"):
|
||
|
"""
|
||
|
Gathers from *values* using the index map. For each element in the domain of the index map this operation looks up
|
||
|
a value for that index in *values*. Two elements from the same segment always get assigned the same value.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor` of shape (B1, ..., Bn, num_segments, V1, ...)):
|
||
|
Tensor with segment values.
|
||
|
index (`IndexMap` of shape (B1, ..., Bn, I1, ..., Ik)):
|
||
|
IndexMap.
|
||
|
name (`str`, *optional*, defaults to 'segmented_gather'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.Tensor)`: Tensor of shape (B1, ..., Bn, I1, ..., Ik, V1, ...) with the gathered values.
|
||
|
"""
|
||
|
indices = index.indices
|
||
|
# first, check whether the indices of the index represent scalar values (i.e. not vectorized)
|
||
|
if len(values.shape[index.batch_dims :]) < 2:
|
||
|
return torch.gather(
|
||
|
values,
|
||
|
index.batch_dims,
|
||
|
indices.view(
|
||
|
values.size()[0], -1
|
||
|
), # torch.gather expects index to have the same number of dimensions as values
|
||
|
).view(indices.size())
|
||
|
else:
|
||
|
# this means we have a vectorized version
|
||
|
# we have to adjust the index
|
||
|
indices = indices.unsqueeze(-1).expand(values.shape)
|
||
|
return torch.gather(values, index.batch_dims, indices)
|
||
|
|
||
|
|
||
|
def flatten(index, name="segmented_flatten"):
|
||
|
"""
|
||
|
Flattens a batched index map (which is typically of shape batch_size, seq_length) to a 1d index map. This operation
|
||
|
relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by
|
||
|
*num_segments* * (k - 1). The result is a tensor with *num_segments* multiplied by the number of elements in the
|
||
|
batch.
|
||
|
|
||
|
Args:
|
||
|
index (`IndexMap`):
|
||
|
IndexMap to flatten.
|
||
|
name (`str`, *optional*, defaults to 'segmented_flatten'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
(`IndexMap`): The flattened IndexMap.
|
||
|
"""
|
||
|
# first, get batch_size as scalar tensor
|
||
|
batch_size = torch.prod(torch.tensor(list(index.batch_shape())))
|
||
|
# next, create offset as 1-D tensor of length batch_size,
|
||
|
# and multiply element-wise by num segments (to offset different elements in the batch) e.g. if batch size is 2: [0, 64]
|
||
|
offset = torch.arange(start=0, end=batch_size, device=index.num_segments.device) * index.num_segments
|
||
|
offset = offset.view(index.batch_shape())
|
||
|
for _ in range(index.batch_dims, len(index.indices.size())): # typically range(1,2)
|
||
|
offset = offset.unsqueeze(-1)
|
||
|
|
||
|
indices = offset + index.indices
|
||
|
return IndexMap(indices=indices.view(-1), num_segments=index.num_segments * batch_size, batch_dims=0)
|
||
|
|
||
|
|
||
|
def range_index_map(batch_shape, num_segments, name="range_index_map"):
|
||
|
"""
|
||
|
Constructs an index map equal to range(num_segments).
|
||
|
|
||
|
Args:
|
||
|
batch_shape (`torch.Size`):
|
||
|
Batch shape
|
||
|
num_segments (`int`):
|
||
|
Number of segments
|
||
|
name (`str`, *optional*, defaults to 'range_index_map'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
(`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
|
||
|
"""
|
||
|
batch_shape = torch.as_tensor(
|
||
|
batch_shape, dtype=torch.long
|
||
|
) # create a rank 1 tensor vector containing batch_shape (e.g. [2])
|
||
|
assert len(batch_shape.size()) == 1
|
||
|
num_segments = torch.as_tensor(num_segments) # create a rank 0 tensor (scalar) containing num_segments (e.g. 64)
|
||
|
assert len(num_segments.size()) == 0
|
||
|
|
||
|
indices = torch.arange(
|
||
|
start=0, end=num_segments, device=num_segments.device
|
||
|
) # create a rank 1 vector with num_segments elements
|
||
|
new_tensor = torch.cat(
|
||
|
[torch.ones_like(batch_shape, dtype=torch.long, device=num_segments.device), num_segments.unsqueeze(dim=0)],
|
||
|
dim=0,
|
||
|
)
|
||
|
# new_tensor is just a vector of [1 64] for example (assuming only 1 batch dimension)
|
||
|
new_shape = [int(x) for x in new_tensor.tolist()]
|
||
|
indices = indices.view(new_shape)
|
||
|
|
||
|
multiples = torch.cat([batch_shape, torch.as_tensor([1])], dim=0)
|
||
|
indices = indices.repeat(multiples.tolist())
|
||
|
# equivalent (in Numpy:)
|
||
|
# indices = torch.as_tensor(np.tile(indices.numpy(), multiples.tolist()))
|
||
|
|
||
|
return IndexMap(indices=indices, num_segments=num_segments, batch_dims=list(batch_shape.size())[0])
|
||
|
|
||
|
|
||
|
def _segment_reduce(values, index, segment_reduce_fn, name):
|
||
|
"""
|
||
|
Applies a segment reduction segment-wise.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor`):
|
||
|
Tensor with segment values.
|
||
|
index (`IndexMap`):
|
||
|
IndexMap.
|
||
|
segment_reduce_fn (`str`):
|
||
|
Name for the reduce operation. One of "sum", "mean", "max" or "min".
|
||
|
name (`str`):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
(`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments).
|
||
|
"""
|
||
|
# Flatten the batch dimensions, as segments ops (scatter) do not support batching.
|
||
|
# However if `values` has extra dimensions to the right keep them
|
||
|
# unflattened. Segmented ops support vector-valued operations.
|
||
|
flat_index = flatten(index)
|
||
|
vector_shape = values.size()[len(index.indices.size()) :] # torch.Size object
|
||
|
flattened_shape = torch.cat(
|
||
|
[torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0
|
||
|
)
|
||
|
# changed "view" by "reshape" in the following line
|
||
|
flat_values = values.reshape(flattened_shape.tolist())
|
||
|
|
||
|
out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device)
|
||
|
segment_means = out.scatter_reduce(
|
||
|
dim=0, index=flat_index.indices.long(), src=flat_values.float(), reduce=segment_reduce_fn, include_self=False
|
||
|
)
|
||
|
|
||
|
# Unflatten the values.
|
||
|
new_shape = torch.cat(
|
||
|
[
|
||
|
torch.as_tensor(index.batch_shape(), dtype=torch.long),
|
||
|
torch.as_tensor([index.num_segments], dtype=torch.long),
|
||
|
torch.as_tensor(vector_shape, dtype=torch.long),
|
||
|
],
|
||
|
dim=0,
|
||
|
)
|
||
|
|
||
|
output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype)
|
||
|
output_index = range_index_map(index.batch_shape(), index.num_segments)
|
||
|
return output_values, output_index
|
||
|
|
||
|
|
||
|
def reduce_sum(values, index, name="segmented_reduce_sum"):
|
||
|
"""
|
||
|
Sums a tensor over its segments.
|
||
|
|
||
|
Outputs 0 for empty segments.
|
||
|
|
||
|
This operations computes the sum over segments, with support for:
|
||
|
|
||
|
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
|
||
|
- Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a sum of
|
||
|
vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
|
||
|
Tensor containing the values of which the sum must be taken segment-wise.
|
||
|
index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
|
||
|
Index defining the segments.
|
||
|
name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
|
||
|
output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. .
|
||
|
"""
|
||
|
return _segment_reduce(values, index, "sum", name)
|
||
|
|
||
|
|
||
|
def reduce_mean(values, index, name="segmented_reduce_mean"):
|
||
|
"""
|
||
|
Averages a tensor over its segments.
|
||
|
|
||
|
Outputs 0 for empty segments.
|
||
|
|
||
|
This operations computes the mean over segments, with support for:
|
||
|
|
||
|
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
|
||
|
- Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a mean of
|
||
|
vectors rather than scalars.
|
||
|
|
||
|
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
|
||
|
Tensor containing the values of which the mean must be taken segment-wise.
|
||
|
index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
|
||
|
Index defining the segments.
|
||
|
name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
|
||
|
output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
|
||
|
"""
|
||
|
return _segment_reduce(values, index, "mean", name)
|
||
|
|
||
|
|
||
|
def reduce_max(values, index, name="segmented_reduce_max"):
|
||
|
"""
|
||
|
Computes the maximum over segments.
|
||
|
|
||
|
This operation computes the maximum over segments, with support for:
|
||
|
|
||
|
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
|
||
|
- Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise
|
||
|
maximum of vectors rather than scalars.
|
||
|
|
||
|
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
|
||
|
Tensor containing the values of which the max must be taken segment-wise.
|
||
|
index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
|
||
|
Index defining the segments.
|
||
|
name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
|
||
|
output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
|
||
|
"""
|
||
|
return _segment_reduce(values, index, "amax", name)
|
||
|
|
||
|
|
||
|
def reduce_min(values, index, name="segmented_reduce_min"):
|
||
|
"""
|
||
|
Computes the minimum over segments.
|
||
|
|
||
|
This operations computes the minimum over segments, with support for:
|
||
|
|
||
|
- Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices.
|
||
|
- Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise
|
||
|
minimum of vectors rather than scalars.
|
||
|
|
||
|
Only the middle dimensions [I1, ..., Ik] are reduced by the operation.
|
||
|
|
||
|
Args:
|
||
|
values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]):
|
||
|
Tensor containing the values of which the min must be taken segment-wise.
|
||
|
index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].):
|
||
|
Index defining the segments.
|
||
|
name (`str`, *optional*, defaults to 'segmented_reduce_sum'):
|
||
|
Name for the operation. Currently not used
|
||
|
|
||
|
Returns:
|
||
|
output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the
|
||
|
output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments].
|
||
|
"""
|
||
|
return _segment_reduce(values, index, "amin", name)
|
||
|
|
||
|
|
||
|
# End of everything related to segmented tensors
|
||
|
|
||
|
|
||
|
def compute_column_logits(
|
||
|
sequence_output, column_output_weights, column_output_bias, cell_index, cell_mask, allow_empty_column_selection
|
||
|
):
|
||
|
"""
|
||
|
Computes the column logits.
|
||
|
|
||
|
Args:
|
||
|
sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model.
|
||
|
column_output_weights (`torch.FloatTensor` of shape `(hidden_size)`):
|
||
|
Weights of the linear layer for column selection.
|
||
|
column_output_bias (`torch.FloatTensor` of shape `()`):
|
||
|
Bias of the linear layer for column selection.
|
||
|
cell_index (`ProductIndexMap`):
|
||
|
Index that groups tokens into cells.
|
||
|
cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
|
||
|
Mask for cells that exist in the table (i.e. that are not padding).
|
||
|
allow_empty_column_selection (`bool`):
|
||
|
Whether to allow not to select any column
|
||
|
|
||
|
Returns:
|
||
|
column_logits (`torch.FloatTensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits
|
||
|
for every example in the batch.
|
||
|
"""
|
||
|
|
||
|
# First, compute the token logits (batch_size, seq_len) - without temperature
|
||
|
token_logits = torch.einsum("bsj,j->bs", sequence_output, column_output_weights) + column_output_bias
|
||
|
|
||
|
# Next, average the logits per cell (batch_size, max_num_cols*max_num_rows)
|
||
|
cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index)
|
||
|
|
||
|
# Finally, average the logits per column (batch_size, max_num_cols)
|
||
|
column_index = cell_index.project_inner(cell_logits_index)
|
||
|
column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index)
|
||
|
|
||
|
cell_count, _ = reduce_sum(cell_mask, column_index)
|
||
|
column_logits /= cell_count + EPSILON_ZERO_DIVISION
|
||
|
|
||
|
# Mask columns that do not appear in the example.
|
||
|
is_padding = torch.logical_and(cell_count < 0.5, ~torch.eq(out_index.indices, 0))
|
||
|
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor(
|
||
|
is_padding, dtype=torch.float32, device=is_padding.device
|
||
|
)
|
||
|
|
||
|
if not allow_empty_column_selection:
|
||
|
column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor(
|
||
|
torch.eq(out_index.indices, 0), dtype=torch.float32, device=out_index.indices.device
|
||
|
)
|
||
|
|
||
|
return column_logits
|
||
|
|
||
|
|
||
|
def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask):
|
||
|
"""
|
||
|
Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The
|
||
|
model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside
|
||
|
the selected column are never selected.
|
||
|
|
||
|
Args:
|
||
|
token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Tensor containing the logits per token.
|
||
|
column_logits (`torch.FloatTensor` of shape `(batch_size, max_num_cols)`):
|
||
|
Tensor containing the logits per column.
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Labels per token.
|
||
|
cell_index (`ProductIndexMap`):
|
||
|
Index that groups tokens into cells.
|
||
|
col_index (`IndexMap`):
|
||
|
Index that groups tokens into columns.
|
||
|
cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`):
|
||
|
Mask for cells that exist in the table (i.e. that are not padding).
|
||
|
|
||
|
Returns:
|
||
|
selection_loss_per_example (`torch.FloatTensor` of shape `(batch_size,)`): Loss for each example. logits
|
||
|
(`torch.FloatTensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select
|
||
|
cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to
|
||
|
a very low value (such that the probabilities are 0).
|
||
|
"""
|
||
|
# Part 1: column loss
|
||
|
|
||
|
# First find the column we should select. We use the column with maximum number of selected cells.
|
||
|
labels_per_column, _ = reduce_sum(torch.as_tensor(labels, dtype=torch.float32, device=labels.device), col_index)
|
||
|
# shape of labels_per_column is (batch_size, max_num_cols). It contains the number of label ids for every column, for every example
|
||
|
column_label = torch.argmax(labels_per_column, dim=-1) # shape (batch_size,)
|
||
|
# Check if there are no selected cells in the column. In that case the model
|
||
|
# should predict the special column id 0, which means "select nothing".
|
||
|
no_cell_selected = torch.eq(
|
||
|
torch.max(labels_per_column, dim=-1)[0], 0
|
||
|
) # no_cell_selected is of shape (batch_size,) and equals True
|
||
|
# if an example of the batch has no cells selected (i.e. if there are no labels set to 1 for that example)
|
||
|
column_label = torch.where(
|
||
|
no_cell_selected.view(column_label.size()), torch.zeros_like(column_label), column_label
|
||
|
)
|
||
|
|
||
|
column_dist = torch.distributions.Categorical(logits=column_logits) # shape (batch_size, max_num_cols)
|
||
|
column_loss_per_example = -column_dist.log_prob(column_label)
|
||
|
|
||
|
# Part 2: cell loss
|
||
|
|
||
|
# Reduce the labels and logits to per-cell from per-token.
|
||
|
# logits_per_cell: shape (batch_size, max_num_rows*max_num_cols) i.e. (batch_size, 64*32)
|
||
|
logits_per_cell, _ = reduce_mean(token_logits, cell_index)
|
||
|
# labels_per_cell: shape (batch_size, 64*32), indicating whether each cell should be selected (1) or not (0)
|
||
|
labels_per_cell, labels_index = reduce_max(
|
||
|
torch.as_tensor(labels, dtype=torch.long, device=labels.device), cell_index
|
||
|
)
|
||
|
|
||
|
# Mask for the selected column.
|
||
|
# column_id_for_cells: shape (batch_size, 64*32), indicating to which column each cell belongs
|
||
|
column_id_for_cells = cell_index.project_inner(labels_index).indices
|
||
|
# column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column to be selected
|
||
|
column_mask = torch.as_tensor(
|
||
|
torch.eq(column_id_for_cells, torch.unsqueeze(column_label, dim=-1)),
|
||
|
dtype=torch.float32,
|
||
|
device=cell_mask.device,
|
||
|
)
|
||
|
|
||
|
# Compute the log-likelihood for cells, but only for the selected column.
|
||
|
cell_dist = torch.distributions.Bernoulli(logits=logits_per_cell) # shape (batch_size, 64*32)
|
||
|
cell_log_prob = cell_dist.log_prob(labels_per_cell.type(torch.float32)) # shape(batch_size, 64*32)
|
||
|
|
||
|
cell_loss = -torch.sum(cell_log_prob * column_mask * cell_mask, dim=1)
|
||
|
|
||
|
# We need to normalize the loss by the number of cells in the column.
|
||
|
cell_loss /= torch.sum(column_mask * cell_mask, dim=1) + EPSILON_ZERO_DIVISION
|
||
|
|
||
|
selection_loss_per_example = column_loss_per_example
|
||
|
selection_loss_per_example += torch.where(
|
||
|
no_cell_selected.view(selection_loss_per_example.size()),
|
||
|
torch.zeros_like(selection_loss_per_example),
|
||
|
cell_loss,
|
||
|
)
|
||
|
|
||
|
# Set the probs outside the selected column (selected by the *model*)
|
||
|
# to 0. This ensures backwards compatibility with models that select
|
||
|
# cells from multiple columns.
|
||
|
selected_column_id = torch.as_tensor(
|
||
|
torch.argmax(column_logits, dim=-1), dtype=torch.long, device=column_logits.device
|
||
|
) # shape (batch_size,)
|
||
|
|
||
|
# selected_column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column selected by the model
|
||
|
selected_column_mask = torch.as_tensor(
|
||
|
torch.eq(column_id_for_cells, torch.unsqueeze(selected_column_id, dim=-1)),
|
||
|
dtype=torch.float32,
|
||
|
device=selected_column_id.device,
|
||
|
)
|
||
|
|
||
|
# Never select cells with the special column id 0.
|
||
|
selected_column_mask = torch.where(
|
||
|
torch.eq(column_id_for_cells, 0).view(selected_column_mask.size()),
|
||
|
torch.zeros_like(selected_column_mask),
|
||
|
selected_column_mask,
|
||
|
)
|
||
|
new_logits_per_cell = logits_per_cell + CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask)
|
||
|
logits = gather(new_logits_per_cell, cell_index)
|
||
|
|
||
|
return selection_loss_per_example, logits
|
||
|
|
||
|
|
||
|
def compute_token_logits(sequence_output, temperature, output_weights, output_bias):
|
||
|
"""
|
||
|
Computes logits per token
|
||
|
|
||
|
Args:
|
||
|
sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||
|
Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model.
|
||
|
temperature (`float`):
|
||
|
Temperature for the Bernoulli distribution.
|
||
|
output_weights (`torch.FloatTensor` of shape `(hidden_size,)`):
|
||
|
Weights of the linear layer for cell selection.
|
||
|
output_bias (`torch.FloatTensor` of shape `()`):
|
||
|
Bias of the linear layer for cell selection
|
||
|
|
||
|
Returns:
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Logits per token.
|
||
|
"""
|
||
|
logits = (torch.einsum("bsj,j->bs", sequence_output, output_weights) + output_bias) / temperature
|
||
|
|
||
|
return logits
|
||
|
|
||
|
|
||
|
def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier):
|
||
|
"""
|
||
|
Finds examples where the model should select cells with no aggregation.
|
||
|
|
||
|
Returns a mask that determines for which examples should the model select answers directly from the table, without
|
||
|
any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only
|
||
|
apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation
|
||
|
case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the
|
||
|
aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold
|
||
|
for this is a hyperparameter *cell_selection_preference*
|
||
|
|
||
|
Args:
|
||
|
answer (`torch.FloatTensor` of shape `(batch_size, )`):
|
||
|
Answer for every example in the batch. Nan if there is no scalar answer.
|
||
|
pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
|
||
|
Output of the pooler (BertPooler) on top of the encoder layer.
|
||
|
cell_selection_preference (`float`):
|
||
|
Preference for cell selection in ambiguous cases.
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head
|
||
|
|
||
|
Returns:
|
||
|
aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use
|
||
|
aggregation functions.
|
||
|
"""
|
||
|
# torch.FloatTensor(batch_size,)
|
||
|
aggregate_mask_init = torch.logical_not(torch.isnan(answer)).type(torch.FloatTensor).to(answer.device)
|
||
|
logits_aggregation = aggregation_classifier(pooled_output)
|
||
|
dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation)
|
||
|
# Index 0 corresponds to "no aggregation".
|
||
|
aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1)
|
||
|
|
||
|
# Cell selection examples according to current model.
|
||
|
is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference
|
||
|
|
||
|
# Examples with non-empty cell selection supervision.
|
||
|
is_cell_supervision_available = torch.sum(labels, dim=1) > 0
|
||
|
|
||
|
# torch.where is not equivalent to tf.where (in tensorflow 1)
|
||
|
# hence the added .view on the condition to match the shape of the first tensor
|
||
|
aggregate_mask = torch.where(
|
||
|
torch.logical_and(is_pred_cell_selection, is_cell_supervision_available).view(aggregate_mask_init.size()),
|
||
|
torch.zeros_like(aggregate_mask_init, dtype=torch.float32),
|
||
|
aggregate_mask_init,
|
||
|
)
|
||
|
|
||
|
aggregate_mask = aggregate_mask.detach()
|
||
|
|
||
|
return aggregate_mask
|
||
|
|
||
|
|
||
|
def _calculate_aggregation_loss_known(
|
||
|
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
|
||
|
):
|
||
|
"""
|
||
|
Calculates aggregation loss when its type is known during training.
|
||
|
|
||
|
In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation"
|
||
|
should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting
|
||
|
where aggregation type is always known, standard cross entropy loss is accumulated for all examples
|
||
|
|
||
|
Args:
|
||
|
logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Logits per aggregation operation.
|
||
|
aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
|
||
|
A mask set to 1 for examples that should use aggregation functions.
|
||
|
aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`):
|
||
|
Aggregation function id for every example in the batch.
|
||
|
use_answer_as_supervision (`bool`, *optional*):
|
||
|
Whether to use the answer as the only supervision for aggregation examples.
|
||
|
num_aggregation_labels (`int`, *optional*, defaults to 0):
|
||
|
The number of aggregation operators to predict.
|
||
|
|
||
|
Returns:
|
||
|
aggregation_loss_known (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (when its type is known
|
||
|
during training) per example.
|
||
|
"""
|
||
|
if use_answer_as_supervision:
|
||
|
# Prepare "no aggregation" targets for cell selection examples.
|
||
|
target_aggregation = torch.zeros_like(aggregate_mask, dtype=torch.long)
|
||
|
else:
|
||
|
# Use aggregation supervision as the target.
|
||
|
target_aggregation = aggregation_labels
|
||
|
|
||
|
one_hot_labels = nn.functional.one_hot(target_aggregation, num_classes=num_aggregation_labels).type(torch.float32)
|
||
|
log_probs = nn.functional.log_softmax(logits_aggregation, dim=-1)
|
||
|
|
||
|
# torch.FloatTensor[batch_size]
|
||
|
per_example_aggregation_intermediate = -torch.sum(one_hot_labels * log_probs, dim=-1)
|
||
|
if use_answer_as_supervision:
|
||
|
# Accumulate loss only for examples requiring cell selection
|
||
|
# (no aggregation).
|
||
|
return per_example_aggregation_intermediate * (1 - aggregate_mask)
|
||
|
else:
|
||
|
return per_example_aggregation_intermediate
|
||
|
|
||
|
|
||
|
def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask):
|
||
|
"""
|
||
|
Calculates aggregation loss in the case of answer supervision.
|
||
|
|
||
|
Args:
|
||
|
logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Logits per aggregation operation.
|
||
|
aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
|
||
|
A mask set to 1 for examples that should use aggregation functions
|
||
|
|
||
|
Returns:
|
||
|
aggregation_loss_unknown (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (in case of answer
|
||
|
supervision) per example.
|
||
|
"""
|
||
|
dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation)
|
||
|
# Index 0 corresponds to "no aggregation".
|
||
|
aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1)
|
||
|
# Predict some aggregation in case of an answer that needs aggregation.
|
||
|
# This increases the probability of all aggregation functions, in a way
|
||
|
# similar to MML, but without considering whether the function gives the
|
||
|
# correct answer.
|
||
|
return -torch.log(aggregation_ops_total_mass) * aggregate_mask
|
||
|
|
||
|
|
||
|
def _calculate_aggregation_loss(
|
||
|
logits_aggregation,
|
||
|
aggregate_mask,
|
||
|
aggregation_labels,
|
||
|
use_answer_as_supervision,
|
||
|
num_aggregation_labels,
|
||
|
aggregation_loss_weight,
|
||
|
):
|
||
|
"""
|
||
|
Calculates the aggregation loss per example.
|
||
|
|
||
|
Args:
|
||
|
logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Logits per aggregation operation.
|
||
|
aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`):
|
||
|
A mask set to 1 for examples that should use aggregation functions.
|
||
|
aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`):
|
||
|
Aggregation function id for every example in the batch.
|
||
|
use_answer_as_supervision (`bool`, *optional*):
|
||
|
Whether to use the answer as the only supervision for aggregation examples.
|
||
|
num_aggregation_labels (`int`, *optional*, defaults to 0):
|
||
|
The number of aggregation operators to predict.
|
||
|
aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
|
||
|
Importance weight for the aggregation loss.
|
||
|
|
||
|
Returns:
|
||
|
aggregation_loss (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss per example.
|
||
|
"""
|
||
|
per_example_aggregation_loss = _calculate_aggregation_loss_known(
|
||
|
logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels
|
||
|
)
|
||
|
|
||
|
if use_answer_as_supervision:
|
||
|
# Add aggregation loss for numeric answers that need aggregation.
|
||
|
per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask)
|
||
|
return aggregation_loss_weight * per_example_aggregation_loss
|
||
|
|
||
|
|
||
|
def _calculate_expected_result(
|
||
|
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
|
||
|
):
|
||
|
"""
|
||
|
Calculates the expected result given cell and aggregation probabilities.
|
||
|
|
||
|
Args:
|
||
|
dist_per_cell (`torch.distributions.Bernoulli`):
|
||
|
Cell selection distribution for each cell.
|
||
|
numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Numeric values of every token. Nan for tokens which are not numeric values.
|
||
|
numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Scale of the numeric values of every token.
|
||
|
input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Mask for the table, without question tokens and table headers.
|
||
|
logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Logits per aggregation operation.
|
||
|
config ([`TapasConfig`]):
|
||
|
Model configuration class with all the hyperparameters of the model
|
||
|
|
||
|
Returns:
|
||
|
expected_result (`torch.FloatTensor` of shape `(batch_size,)`): The expected result per example.
|
||
|
"""
|
||
|
if config.use_gumbel_for_cells:
|
||
|
gumbel_dist = torch.distributions.RelaxedBernoulli(
|
||
|
# The token logits where already divided by the temperature and used for
|
||
|
# computing cell selection errors so we need to multiply it again here
|
||
|
temperature=config.temperature,
|
||
|
logits=dist_per_cell.logits * config.temperature,
|
||
|
)
|
||
|
scaled_probability_per_cell = gumbel_dist.sample()
|
||
|
else:
|
||
|
scaled_probability_per_cell = dist_per_cell.probs
|
||
|
|
||
|
# <float32>[batch_size, seq_length]
|
||
|
scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float
|
||
|
count_result = torch.sum(scaled_probability_per_cell, dim=1)
|
||
|
numeric_values_masked = torch.where(
|
||
|
torch.isnan(numeric_values), torch.zeros_like(numeric_values), numeric_values
|
||
|
) # Mask non-numeric table values to zero.
|
||
|
sum_result = torch.sum(scaled_probability_per_cell * numeric_values_masked, dim=1)
|
||
|
avg_approximation = config.average_approximation_function
|
||
|
if avg_approximation == AverageApproximationFunction.RATIO:
|
||
|
average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION)
|
||
|
elif avg_approximation == AverageApproximationFunction.FIRST_ORDER:
|
||
|
# The sum of all probabilities except that correspond to other cells
|
||
|
# Ex here stands for expectation, more explicitly the expectation of the sum of N-1 Bernoulli random variables plus
|
||
|
# the constant 1, which is computed as adding all N expected values and subtracting the extra one. It corresponds to X_c
|
||
|
# in Appendix D of the original TAPAS paper which is trying to approximate the average of a random set.
|
||
|
ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1
|
||
|
average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell / ex, dim=1)
|
||
|
elif avg_approximation == AverageApproximationFunction.SECOND_ORDER:
|
||
|
# The sum of all probabilities except that correspond to other cells
|
||
|
ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1
|
||
|
pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell)
|
||
|
var = torch.sum(pointwise_var, dim=1, keepdim=True) - pointwise_var
|
||
|
|
||
|
multiplier = (var / torch.square(ex) + 1) / ex
|
||
|
average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell * multiplier, dim=1)
|
||
|
else:
|
||
|
raise ValueError(f"Invalid average_approximation_function: {config.average_approximation_function}")
|
||
|
|
||
|
if config.use_gumbel_for_aggregation:
|
||
|
gumbel_dist = torch.distributions.RelaxedOneHotCategorical(
|
||
|
config.aggregation_temperature, logits=logits_aggregation[:, 1:]
|
||
|
)
|
||
|
# <float32>[batch_size, num_aggregation_labels - 1]
|
||
|
aggregation_op_only_probs = gumbel_dist.sample()
|
||
|
else:
|
||
|
# <float32>[batch_size, num_aggregation_labels - 1]
|
||
|
aggregation_op_only_probs = nn.functional.softmax(
|
||
|
logits_aggregation[:, 1:] / config.aggregation_temperature, dim=-1
|
||
|
)
|
||
|
|
||
|
all_results = torch.cat(
|
||
|
[
|
||
|
torch.unsqueeze(sum_result, dim=1),
|
||
|
torch.unsqueeze(average_result, dim=1),
|
||
|
torch.unsqueeze(count_result, dim=1),
|
||
|
],
|
||
|
dim=1,
|
||
|
)
|
||
|
|
||
|
expected_result = torch.sum(all_results * aggregation_op_only_probs, dim=1)
|
||
|
return expected_result
|
||
|
|
||
|
|
||
|
# PyTorch does not currently support Huber loss with custom delta so we define it ourself
|
||
|
def huber_loss(input, target, delta: float = 1.0):
|
||
|
errors = torch.abs(input - target) # shape (batch_size,)
|
||
|
return torch.where(errors < delta, 0.5 * errors**2, errors * delta - (0.5 * delta**2))
|
||
|
|
||
|
|
||
|
def _calculate_regression_loss(
|
||
|
answer,
|
||
|
aggregate_mask,
|
||
|
dist_per_cell,
|
||
|
numeric_values,
|
||
|
numeric_values_scale,
|
||
|
input_mask_float,
|
||
|
logits_aggregation,
|
||
|
config,
|
||
|
):
|
||
|
"""
|
||
|
Calculates the regression loss per example.
|
||
|
|
||
|
Args:
|
||
|
answer (`torch.FloatTensor` of shape `(batch_size,)`):
|
||
|
Answer for every example in the batch. Nan if there is no scalar answer.
|
||
|
aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`):
|
||
|
A mask set to 1 for examples that should use aggregation functions.
|
||
|
dist_per_cell (`torch.distributions.Bernoulli`):
|
||
|
Cell selection distribution for each cell.
|
||
|
numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Numeric values of every token. Nan for tokens which are not numeric values.
|
||
|
numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Scale of the numeric values of every token.
|
||
|
input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`):
|
||
|
Mask for the table, without question tokens and table headers.
|
||
|
logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`):
|
||
|
Logits per aggregation operation.
|
||
|
config ([`TapasConfig`]):
|
||
|
Model configuration class with all the parameters of the model
|
||
|
|
||
|
Returns:
|
||
|
per_example_answer_loss_scaled (`torch.FloatTensor` of shape `(batch_size,)`): Scales answer loss for each
|
||
|
example in the batch. large_answer_loss_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask which is 1
|
||
|
for examples for which their answer loss is larger than the answer_loss_cutoff.
|
||
|
"""
|
||
|
# float32 (batch_size,)
|
||
|
expected_result = _calculate_expected_result(
|
||
|
dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config
|
||
|
)
|
||
|
|
||
|
# float32 (batch_size,)
|
||
|
answer_masked = torch.where(torch.isnan(answer), torch.zeros_like(answer), answer)
|
||
|
|
||
|
if config.use_normalized_answer_loss:
|
||
|
normalizer = (torch.max(torch.abs(expected_result), torch.abs(answer_masked)) + EPSILON_ZERO_DIVISION).detach()
|
||
|
|
||
|
normalized_answer_masked = answer_masked / normalizer
|
||
|
normalized_expected_result = expected_result / normalizer
|
||
|
per_example_answer_loss = huber_loss(
|
||
|
normalized_expected_result * aggregate_mask, normalized_answer_masked * aggregate_mask
|
||
|
)
|
||
|
else:
|
||
|
per_example_answer_loss = huber_loss(
|
||
|
expected_result * aggregate_mask, answer_masked * aggregate_mask, delta=config.huber_loss_delta
|
||
|
)
|
||
|
|
||
|
if config.answer_loss_cutoff is None:
|
||
|
large_answer_loss_mask = torch.ones_like(per_example_answer_loss, dtype=torch.float32)
|
||
|
|
||
|
else:
|
||
|
large_answer_loss_mask = torch.where(
|
||
|
per_example_answer_loss > config.answer_loss_cutoff,
|
||
|
torch.zeros_like(per_example_answer_loss, dtype=torch.float32),
|
||
|
torch.ones_like(per_example_answer_loss, dtype=torch.float32),
|
||
|
)
|
||
|
per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask)
|
||
|
|
||
|
return per_example_answer_loss_scaled, large_answer_loss_mask
|