ai-content-maker/.venv/Lib/site-packages/transformers/models/trocr/processing_trocr.py

141 lines
5.6 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for TrOCR.
"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class TrOCRProcessor(ProcessorMixin):
r"""
Constructs a TrOCR processor which wraps a vision image processor and a TrOCR tokenizer into a single processor.
[`TrOCRProcessor`] offers all the functionalities of [`ViTImageProcessor`/`DeiTImageProcessor`] and
[`RobertaTokenizer`/`XLMRobertaTokenizer`]. See the [`~TrOCRProcessor.__call__`] and [`~TrOCRProcessor.decode`] for
more information.
Args:
image_processor ([`ViTImageProcessor`/`DeiTImageProcessor`], *optional*):
An instance of [`ViTImageProcessor`/`DeiTImageProcessor`]. The image processor is a required input.
tokenizer ([`RobertaTokenizer`/`XLMRobertaTokenizer`], *optional*):
An instance of [`RobertaTokenizer`/`XLMRobertaTokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to AutoImageProcessor's
[`~AutoImageProcessor.__call__`] and returns its output. If used in the context
[`~TrOCRProcessor.as_target_processor`] this method forwards all its arguments to TrOCRTokenizer's
[`~TrOCRTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
images = kwargs.pop("images", None)
text = kwargs.pop("text", None)
if len(args) > 0:
images = args[0]
args = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process.")
if images is not None:
inputs = self.image_processor(images, *args, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif images is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning TrOCR.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your images inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.image_processor
self._in_target_context_manager = False
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor