893 lines
38 KiB
Python
893 lines
38 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License=, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing=, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS=,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""PyTorch TVP Model"""
|
||
|
|
||
|
import math
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
|
||
|
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import prune_linear_layer
|
||
|
from ...utils import logging
|
||
|
from ...utils.backbone_utils import load_backbone
|
||
|
from .configuration_tvp import TvpConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import TVP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class TvpVideoGroundingOutput(ModelOutput):
|
||
|
"""
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
||
|
Temporal-Distance IoU loss for video grounding.
|
||
|
logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
||
|
Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the
|
||
|
input texts.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
|
||
|
the model at the output of each layer plus the optional initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
logits: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
||
|
|
||
|
|
||
|
class TvpLoss(nn.Module):
|
||
|
"""
|
||
|
This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute
|
||
|
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched
|
||
|
ground-truth / prediction (supervise class and box).
|
||
|
|
||
|
Args:
|
||
|
losses (`List[str]`):
|
||
|
List of all the losses to be applied.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, losses):
|
||
|
super().__init__()
|
||
|
self.loss_map = {
|
||
|
"iou": self.loss_iou,
|
||
|
"distance": self.loss_distance,
|
||
|
"duration": self.loss_duration,
|
||
|
}
|
||
|
for loss in losses:
|
||
|
if loss not in self.loss_map:
|
||
|
raise ValueError(f"Loss {loss} not supported")
|
||
|
|
||
|
self.losses = losses
|
||
|
|
||
|
def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
|
||
|
"""
|
||
|
Measure the intersection over union.
|
||
|
"""
|
||
|
inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time)
|
||
|
union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time)
|
||
|
iou = 1 - inter.clamp(min=0) / union
|
||
|
|
||
|
return iou
|
||
|
|
||
|
def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
|
||
|
"""
|
||
|
Measure the distance of mid points.
|
||
|
"""
|
||
|
mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0)
|
||
|
mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0)
|
||
|
distance_diff = torch.div(
|
||
|
torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration
|
||
|
).clamp(min=0.2)
|
||
|
|
||
|
return distance_diff
|
||
|
|
||
|
def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
|
||
|
"""
|
||
|
Measure the difference of duration.
|
||
|
"""
|
||
|
duration_candidates = torch.sub(candidates_end_time, candidates_start_time)
|
||
|
duration_groundtruth = torch.sub(end_time, start_time)
|
||
|
duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration))
|
||
|
duration_diff = duration_diff.clamp(min=0.4)
|
||
|
|
||
|
return duration_diff
|
||
|
|
||
|
def forward(self, logits, labels):
|
||
|
"""
|
||
|
This performs the loss computation.
|
||
|
|
||
|
Args:
|
||
|
logits (`torch.FloatTensor`):
|
||
|
The output logits of head module.
|
||
|
labels (`List[torch.FloatTensor]`):
|
||
|
List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration.
|
||
|
"""
|
||
|
duration, start_time, end_time = labels
|
||
|
candidates = torch.mul(logits, duration)
|
||
|
candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float()
|
||
|
|
||
|
losses_dict = {}
|
||
|
for loss in self.losses:
|
||
|
losses_dict.update(
|
||
|
{loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)}
|
||
|
)
|
||
|
|
||
|
return losses_dict
|
||
|
|
||
|
|
||
|
class TvpVisionModel(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.backbone = load_backbone(config)
|
||
|
self.grid_encoder_conv = nn.Conv2d(
|
||
|
config.backbone_config.hidden_sizes[-1],
|
||
|
config.hidden_size,
|
||
|
kernel_size=3,
|
||
|
stride=1,
|
||
|
padding=1,
|
||
|
groups=1,
|
||
|
bias=False,
|
||
|
)
|
||
|
|
||
|
def forward(self, pixel_values):
|
||
|
batch_size, num_frames, num_channels, height, width = pixel_values.shape
|
||
|
# (batch_size * num_frames, num_channels, height, width)
|
||
|
pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width)
|
||
|
grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0]
|
||
|
grid = self.grid_encoder_conv(grid_feat_outputs)
|
||
|
grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2)
|
||
|
grid = nn.functional.relu(grid, inplace=True)
|
||
|
new_channel, new_height, new_width = grid.shape[-3:]
|
||
|
# (batch_size, num_frames, num_channels, height, width)
|
||
|
grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width)
|
||
|
# (batch_size, num_frames, height, width, num_channels)
|
||
|
grid = grid.permute(0, 1, 3, 4, 2)
|
||
|
return grid
|
||
|
|
||
|
|
||
|
class TvpVisualInputEmbedding(nn.Module):
|
||
|
"""
|
||
|
Takes input of both image and video (multi-frame)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
# sequence embedding
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||
|
self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size)
|
||
|
self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size)
|
||
|
self.token_type_embeddings = nn.Embedding(1, config.hidden_size)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def add_2d_positional_embeddings(self, grid):
|
||
|
"""
|
||
|
Args:
|
||
|
grid: (batch_size, height, width, hidden_dim)
|
||
|
Returns:
|
||
|
grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim)
|
||
|
"""
|
||
|
batch_size, height, width, hidden_dim = grid.shape
|
||
|
|
||
|
# add row-wise position embeddings
|
||
|
row_position_ids = torch.arange(height, dtype=torch.long, device=grid.device) # (height, )
|
||
|
row_position_embeddings = self.row_position_embeddings(row_position_ids) # (height, hidden_dim)
|
||
|
row_shape = (1,) * (len(grid.shape) - 3) + (height, 1, hidden_dim) # (1, height, 1, hidden_dim)
|
||
|
grid = grid + row_position_embeddings.view(*row_shape) # broadcast automatically
|
||
|
|
||
|
# add column-wise position embeddings
|
||
|
col_position_ids = torch.arange(width, dtype=torch.long, device=grid.device) # (width, )
|
||
|
col_position_embeddings = self.col_position_embeddings(col_position_ids) # (width, hidden_dim)
|
||
|
col_shape = (batch_size, 1, width, hidden_dim) # (1, 1, width, hidden_dim)
|
||
|
return grid + col_position_embeddings.view(*col_shape) # broadcast automatically
|
||
|
|
||
|
def forward(self, grid):
|
||
|
"""
|
||
|
Args:
|
||
|
grid: Array of shape (batch_size, num_frames, height, width, num_channels).
|
||
|
It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note,
|
||
|
num_frames can be 1
|
||
|
|
||
|
Returns:
|
||
|
embeddings: The embedding of grid with size (batch_size, height*width, num_channels)
|
||
|
|
||
|
"""
|
||
|
batch_size, num_frames, height, width, num_channels = grid.shape
|
||
|
# temporal mean pooling, (batch_size, height, width, hidden_size)
|
||
|
grid = grid.mean(1)
|
||
|
grid = self.add_2d_positional_embeddings(grid)
|
||
|
# image token sequence, (batch_size, height*width, num_channels)
|
||
|
visual_tokens = grid.view(batch_size, -1, num_channels)
|
||
|
visual_tokens_shape = visual_tokens.shape[:-1]
|
||
|
device = visual_tokens.device
|
||
|
|
||
|
# image token type embeddings.
|
||
|
token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device)
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = visual_tokens + token_type_embeddings
|
||
|
embeddings = self.layer_norm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class TvpTextInputEmbeddings(nn.Module):
|
||
|
"""Construct the embeddings from word, position and token_type embeddings."""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
||
|
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||
|
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
|
||
|
if input_ids is not None:
|
||
|
input_shape = input_ids.size()
|
||
|
else:
|
||
|
input_shape = inputs_embeds.size()[:-1]
|
||
|
|
||
|
seq_length = input_shape[1]
|
||
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||
|
if position_ids is None:
|
||
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
|
||
|
position_ids = position_ids.unsqueeze(0).expand(input_shape)
|
||
|
if token_type_ids is None:
|
||
|
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
||
|
|
||
|
if inputs_embeds is None:
|
||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
position_embeddings = self.position_embeddings(position_ids)
|
||
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
||
|
|
||
|
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
|
||
|
embeddings = self.layer_norm(embeddings)
|
||
|
embeddings = self.dropout(embeddings)
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
class TvpAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
||
|
raise ValueError(
|
||
|
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}"
|
||
|
)
|
||
|
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
self.pruned_heads = set()
|
||
|
|
||
|
def prune_heads(self, heads):
|
||
|
if len(heads) == 0:
|
||
|
return
|
||
|
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
|
||
|
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads
|
||
|
for head in heads:
|
||
|
# Compute how many pruned heads are before the head and move the index accordingly
|
||
|
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
|
||
|
mask[head] = 0
|
||
|
mask = mask.view(-1).contiguous().eq(1)
|
||
|
index = torch.arange(len(mask))[mask].long()
|
||
|
|
||
|
# Prune linear layers
|
||
|
self.query = prune_linear_layer(self.query, index)
|
||
|
self.key = prune_linear_layer(self.key, index)
|
||
|
self.value = prune_linear_layer(self.value, index)
|
||
|
self.dense = prune_linear_layer(self.dense, index, dim=1)
|
||
|
|
||
|
# Update hyper params and store pruned heads
|
||
|
self.num_attention_heads = self.num_attention_heads - len(heads)
|
||
|
self.all_head_size = self.attention_head_size * self.num_attention_heads
|
||
|
self.pruned_heads = self.pruned_heads.union(heads)
|
||
|
|
||
|
def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int):
|
||
|
return (
|
||
|
tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size)
|
||
|
.transpose(1, 2)
|
||
|
.contiguous()
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
):
|
||
|
batch_size, sequence_length = hidden_states.shape[:2]
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
|
||
|
mixed_key_layer = self.key(hidden_states)
|
||
|
mixed_value_layer = self.value(hidden_states)
|
||
|
|
||
|
query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size)
|
||
|
key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size)
|
||
|
value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
if attention_mask is not None:
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.attn_dropout(attention_probs)
|
||
|
|
||
|
# Mask heads if we want to
|
||
|
if head_mask is not None:
|
||
|
attention_probs = attention_probs * head_mask
|
||
|
|
||
|
attn_output = torch.matmul(attention_probs, value_layer)
|
||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||
|
attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size)
|
||
|
|
||
|
attn_output = self.dense(attn_output)
|
||
|
attn_output = self.dropout(attn_output)
|
||
|
attn_output = self.layer_norm(attn_output + hidden_states)
|
||
|
# add attentions if we output them
|
||
|
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp
|
||
|
class TvpIntermediate(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class TvpOutputLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.layer_norm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class TvpEncodeLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.attention = TvpAttention(config)
|
||
|
self.intermediate = TvpIntermediate(config)
|
||
|
self.output = TvpOutputLayer(config)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask=None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
):
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
attention_output = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
outputs = (layer_output,) + outputs
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class TvpEncoder(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
):
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
all_hidden_states = ()
|
||
|
all_attentions = ()
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
(head_mask[i] if head_mask is not None else None),
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
if output_attentions:
|
||
|
all_attentions = all_attentions + (layer_outputs[1],)
|
||
|
|
||
|
# Add last layer
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
outputs = (hidden_states,)
|
||
|
if output_hidden_states:
|
||
|
outputs = outputs + (all_hidden_states,)
|
||
|
if output_attentions:
|
||
|
outputs = outputs + (all_attentions,)
|
||
|
return outputs # last-layer hidden state, (all hidden states), (all attentions)
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states if output_hidden_states else None,
|
||
|
attentions=all_attentions if output_attentions else None,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp
|
||
|
class TvpPooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
class TvpPreTrainedModel(PreTrainedModel):
|
||
|
"""An abstract class to handle weights initialization and
|
||
|
a simple interface for downloading and loading pretrained models.
|
||
|
"""
|
||
|
|
||
|
config_class = TvpConfig
|
||
|
base_model_prefix = "model"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Embedding)):
|
||
|
# Slightly different from the TF version which uses truncated_normal for initialization
|
||
|
# cf https://github.com/pytorch/pytorch/pull/5617
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
if isinstance(module, nn.Linear) and module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
|
||
|
if isinstance(module, nn.Conv2d):
|
||
|
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
||
|
if module.bias is not None:
|
||
|
nn.init.constant_(module.bias, 0)
|
||
|
|
||
|
|
||
|
TVP_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
||
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`TvpConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
TVP_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
|
||
|
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
|
||
|
IDs?](../glossary#input-ids)
|
||
|
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`TvpImageProcessor`]. See [`TvpImageProcessor.__call__`]
|
||
|
for details.
|
||
|
|
||
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class TvpFrameDownPadPrompter(nn.Module):
|
||
|
"""
|
||
|
Pad frames extracted from videos only at the bottom.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
if config.visual_prompter_apply not in ("add", "replace", "remove"):
|
||
|
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
|
||
|
|
||
|
super().__init__()
|
||
|
self.visual_prompt_size = config.visual_prompt_size
|
||
|
self.frame_num = config.frame_num
|
||
|
self.max_img_size = config.max_img_size
|
||
|
self.visual_prompter_apply = config.visual_prompter_apply
|
||
|
|
||
|
self.pad_down = nn.Parameter(
|
||
|
torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size])
|
||
|
)
|
||
|
|
||
|
def forward(self, pixel_values):
|
||
|
if self.visual_prompter_apply != "add":
|
||
|
visual_prompt_mask = torch.ones(
|
||
|
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
|
||
|
)
|
||
|
visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0
|
||
|
pixel_values *= visual_prompt_mask
|
||
|
if self.visual_prompter_apply != "remove":
|
||
|
prompt = torch.zeros(
|
||
|
[pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size],
|
||
|
device=pixel_values.device,
|
||
|
)
|
||
|
start_point = self.max_img_size - self.visual_prompt_size
|
||
|
prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down
|
||
|
pixel_values += prompt.to(pixel_values.dtype)
|
||
|
return pixel_values
|
||
|
|
||
|
|
||
|
class TvpFramePadPrompter(nn.Module):
|
||
|
"""
|
||
|
Pad frames extracted from videos in the surroundings.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
if config.visual_prompter_apply not in ("add", "replace", "remove"):
|
||
|
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
|
||
|
|
||
|
super().__init__()
|
||
|
self.num_frames = config.num_frames
|
||
|
self.max_img_size = config.max_img_size
|
||
|
self.visual_prompter_apply = config.visual_prompter_apply
|
||
|
|
||
|
self.base_size = config.max_img_size - config.visual_prompt_size * 2
|
||
|
self.pad_up = nn.Parameter(
|
||
|
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
|
||
|
)
|
||
|
self.pad_down = nn.Parameter(
|
||
|
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
|
||
|
)
|
||
|
self.pad_left = nn.Parameter(
|
||
|
torch.randn(
|
||
|
[
|
||
|
1,
|
||
|
config.num_frames,
|
||
|
3,
|
||
|
config.max_img_size - config.visual_prompt_size * 2,
|
||
|
config.visual_prompt_size,
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
self.pad_right = nn.Parameter(
|
||
|
torch.randn(
|
||
|
[
|
||
|
1,
|
||
|
config.num_frames,
|
||
|
3,
|
||
|
config.max_img_size - config.visual_prompt_size * 2,
|
||
|
config.visual_prompt_size,
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def forward(self, pixel_values):
|
||
|
if self.visual_prompter_apply not in ("add", "remove", "replace"):
|
||
|
raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}")
|
||
|
if self.visual_prompter_apply in ("replace", "remove"):
|
||
|
visual_prompt_mask = torch.ones(
|
||
|
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
|
||
|
)
|
||
|
pixel_values *= visual_prompt_mask
|
||
|
if self.visual_prompter_apply in ("replace", "add"):
|
||
|
base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device)
|
||
|
prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4)
|
||
|
prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3)
|
||
|
prompt = torch.cat(pixel_values.size(0) * [prompt])
|
||
|
pixel_values = pixel_values + prompt.to(pixel_values.dtype)
|
||
|
return pixel_values
|
||
|
|
||
|
|
||
|
TVP_PROMPTER_CLASSES_MAPPING = {
|
||
|
"framedownpad": TvpFrameDownPadPrompter,
|
||
|
"framepad": TvpFramePadPrompter,
|
||
|
}
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Tvp Model transformer outputting BaseModelOutputWithPooling object without any specific head on" " top.",
|
||
|
TVP_START_DOCSTRING,
|
||
|
)
|
||
|
class TvpModel(TvpPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.vision_model = TvpVisionModel(config)
|
||
|
self.embeddings = TvpTextInputEmbeddings(config)
|
||
|
self.visual_embeddings = TvpVisualInputEmbedding(config)
|
||
|
self.encoder = TvpEncoder(config)
|
||
|
self.pooler = TvpPooler(config)
|
||
|
self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size]))
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING:
|
||
|
raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)")
|
||
|
self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.embeddings.word_embeddings
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.embeddings.word_embeddings = value
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune):
|
||
|
"""Prunes heads of the model.
|
||
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=TvpConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
):
|
||
|
r"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> import torch
|
||
|
>>> from transformers import AutoConfig, AutoTokenizer, TvpModel
|
||
|
|
||
|
>>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp")
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
|
||
|
|
||
|
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
|
||
|
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
|
||
|
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
|
||
|
# Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features.
|
||
|
pixel_values = self.vision_model(self.visual_prompter(pixel_values))
|
||
|
# (batch_size, sequence_length, hidden_size)
|
||
|
text_embedding_output = self.embeddings(input_ids=input_ids)
|
||
|
# (batch_size, visual_sequence_length, hidden_size)
|
||
|
visual_embedding_output = self.visual_embeddings(pixel_values)
|
||
|
if attention_mask is not None:
|
||
|
# (batch_size, visual_sequence_length)
|
||
|
visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2])
|
||
|
pt_mask = torch.ones(attention_mask.shape[0], 10).to(
|
||
|
device=attention_mask.device, dtype=attention_mask.dtype
|
||
|
)
|
||
|
attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1)
|
||
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
||
|
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device)
|
||
|
text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1)
|
||
|
# (batch_size, sequence_length + visual_sequence_length, hidden_size)
|
||
|
embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
attention_mask=attention_mask,
|
||
|
head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers),
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0]
|
||
|
pooled_output = self.pooler(last_hidden_state)
|
||
|
last_hidden_state = self.dropout(last_hidden_state)
|
||
|
pooled_output = self.dropout(pooled_output)
|
||
|
if not return_dict:
|
||
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutputWithPooling(
|
||
|
last_hidden_state=last_hidden_state,
|
||
|
pooler_output=pooled_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TvpVideoGroundingHead(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2)
|
||
|
self.layer_1 = nn.Linear(config.hidden_size * 2, 2)
|
||
|
self.activation_0 = nn.ReLU()
|
||
|
self.activation_1 = nn.Sigmoid()
|
||
|
|
||
|
def forward(self, pooler_output):
|
||
|
logits = self.activation_0(self.layer_0(pooler_output))
|
||
|
logits = self.activation_1(self.layer_1(logits))
|
||
|
return logits
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Tvp Model with a video grounding head on top computing IoU, distance, and duration loss.
|
||
|
""",
|
||
|
TVP_START_DOCSTRING,
|
||
|
)
|
||
|
class TvpForVideoGrounding(TvpPreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.model = TvpModel(config)
|
||
|
self.video_grounding_head = TvpVideoGroundingHead(config)
|
||
|
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=TvpVideoGroundingOutput, config_class=TvpConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_ids: Optional[torch.LongTensor] = None,
|
||
|
pixel_values: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
labels: Tuple[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
):
|
||
|
r"""
|
||
|
labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*):
|
||
|
The labels contains duration, start time, and end time of the video corresponding to the text.
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
```python
|
||
|
>>> import torch
|
||
|
>>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding
|
||
|
|
||
|
>>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp")
|
||
|
|
||
|
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
|
||
|
|
||
|
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
|
||
|
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
|
||
|
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
outputs = self.model(
|
||
|
input_ids,
|
||
|
pixel_values,
|
||
|
attention_mask,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
pooler_output = outputs[1]
|
||
|
|
||
|
logits = self.video_grounding_head(pooler_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
criterion = TvpLoss(["iou", "distance", "duration"])
|
||
|
criterion.to(self.device)
|
||
|
loss_dict = criterion(logits, labels)
|
||
|
loss = (
|
||
|
loss_dict["iou"]
|
||
|
+ self.config.distance_loss_weight * loss_dict["distance"]
|
||
|
+ self.config.duration_loss_weight * loss_dict["duration"]
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
outputs = (logits,) + outputs[2:]
|
||
|
if loss is not None:
|
||
|
outputs = (loss,) + outputs
|
||
|
return outputs
|
||
|
|
||
|
return TvpVideoGroundingOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|