ai-content-maker/.venv/Lib/site-packages/transformers/models/vitdet/configuration_vitdet.py

158 lines
7.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VitDet model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
class VitDetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VitDetModel`]. It is used to instantiate an
VitDet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the VitDet
[google/vitdet-base-patch16-224](https://huggingface.co/google/vitdet-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
mlp_ratio (`int`, *optional*, defaults to 4):
Ratio of mlp hidden dim to embedding dim.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
pretrain_image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image during pretraining.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
drop_path_rate (`float`, *optional*, defaults to 0.0):
Stochastic depth rate.
window_block_indices (`List[int]`, *optional*, defaults to `[]`):
List of indices of blocks that should have window attention instead of regular global self-attention.
residual_block_indices (`List[int]`, *optional*, defaults to `[]`):
List of indices of blocks that should have an extra residual block after the MLP.
use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to add absolute position embeddings to the patch embeddings.
use_relative_position_embeddings (`bool`, *optional*, defaults to `False`):
Whether to add relative position embeddings to the attention maps.
window_size (`int`, *optional*, defaults to 0):
The size of the attention window.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import VitDetConfig, VitDetModel
>>> # Initializing a VitDet configuration
>>> configuration = VitDetConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = VitDetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vitdet"
def __init__(
self,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
mlp_ratio=4,
hidden_act="gelu",
dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=224,
pretrain_image_size=224,
patch_size=16,
num_channels=3,
qkv_bias=True,
drop_path_rate=0.0,
window_block_indices=[],
residual_block_indices=[],
use_absolute_position_embeddings=True,
use_relative_position_embeddings=False,
window_size=0,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.mlp_ratio = mlp_ratio
self.hidden_act = hidden_act
self.dropout_prob = dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.pretrain_image_size = pretrain_image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.drop_path_rate = drop_path_rate
self.window_block_indices = window_block_indices
self.residual_block_indices = residual_block_indices
self.use_absolute_position_embeddings = use_absolute_position_embeddings
self.use_relative_position_embeddings = use_relative_position_embeddings
self.window_size = window_size
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, self.num_hidden_layers + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)