879 lines
34 KiB
Python
879 lines
34 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch ViTDet backbone."""
|
||
|
|
||
|
|
||
|
import collections.abc
|
||
|
import math
|
||
|
from typing import Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...modeling_outputs import BackboneOutput, BaseModelOutput
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...utils import (
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from ...utils.backbone_utils import BackboneMixin
|
||
|
from .configuration_vitdet import VitDetConfig
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
# General docstring
|
||
|
_CONFIG_FOR_DOC = "VitDetConfig"
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import VITDET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
class VitDetEmbeddings(nn.Module):
|
||
|
"""
|
||
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
||
|
`hidden_states` (patch embeddings) to be consumed by a Transformer.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
image_size, patch_size = config.pretrain_image_size, config.patch_size
|
||
|
num_channels, hidden_size = config.num_channels, config.hidden_size
|
||
|
|
||
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
|
||
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
|
||
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
||
|
self.image_size = image_size
|
||
|
self.patch_size = patch_size
|
||
|
self.num_channels = num_channels
|
||
|
self.num_patches = num_patches
|
||
|
|
||
|
if config.use_absolute_position_embeddings:
|
||
|
# Initialize absolute positional embedding with pretrain image size.
|
||
|
num_positions = num_patches + 1
|
||
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_positions, config.hidden_size))
|
||
|
else:
|
||
|
self.position_embeddings = None
|
||
|
|
||
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
|
||
|
|
||
|
def get_absolute_positions(self, abs_pos_embeddings, has_cls_token, height, width):
|
||
|
"""
|
||
|
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token dimension for the
|
||
|
original embeddings.
|
||
|
|
||
|
Args:
|
||
|
abs_pos_embeddings (`torch.Tensor`):
|
||
|
Absolute positional embeddings with (1, num_position, num_channels).
|
||
|
has_cls_token (`bool`):
|
||
|
If true, has 1 embedding in abs_pos_embeddings for cls token.
|
||
|
height (`int`):
|
||
|
Height of input image tokens.
|
||
|
width (`int`):
|
||
|
Width of input image tokens.
|
||
|
|
||
|
Returns:
|
||
|
Absolute positional embeddings after processing with shape (1, height, width, num_channels)
|
||
|
"""
|
||
|
if has_cls_token:
|
||
|
abs_pos_embeddings = abs_pos_embeddings[:, 1:]
|
||
|
num_position = abs_pos_embeddings.shape[1]
|
||
|
size = int(math.sqrt(num_position)) # This is a constant and can be recorded as such in the ONNX export.
|
||
|
if size * size != num_position:
|
||
|
raise ValueError("Absolute position embeddings must be a square number.")
|
||
|
|
||
|
if torch.jit.is_tracing() or (size != height or size != width):
|
||
|
# nn.functional.interpolate is a noop in case size == height and size == width - we need to always capture this path with jit.trace.
|
||
|
new_abs_pos_embeddings = nn.functional.interpolate(
|
||
|
abs_pos_embeddings.reshape(1, size, size, -1).permute(0, 3, 1, 2),
|
||
|
size=(height, width),
|
||
|
mode="bicubic",
|
||
|
align_corners=False,
|
||
|
)
|
||
|
|
||
|
return new_abs_pos_embeddings.permute(0, 2, 3, 1)
|
||
|
else:
|
||
|
return abs_pos_embeddings.reshape(1, height, width, -1)
|
||
|
|
||
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
||
|
num_channels = pixel_values.shape[1]
|
||
|
if num_channels != self.num_channels:
|
||
|
raise ValueError(
|
||
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
||
|
f" Expected {self.num_channels} but got {num_channels}."
|
||
|
)
|
||
|
embeddings = self.projection(pixel_values)
|
||
|
|
||
|
if self.position_embeddings is not None:
|
||
|
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
|
||
|
embeddings = embeddings.permute(0, 2, 3, 1)
|
||
|
# add position embeddings
|
||
|
embeddings = embeddings + self.get_absolute_positions(
|
||
|
self.position_embeddings, True, embeddings.shape[1], embeddings.shape[2]
|
||
|
)
|
||
|
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
|
||
|
embeddings = embeddings.permute(0, 3, 1, 2)
|
||
|
|
||
|
return embeddings
|
||
|
|
||
|
|
||
|
@torch.jit.script_if_tracing # nn.functional.interpolate's `size` needs to be dynamic.
|
||
|
def get_rel_pos(q_size, k_size, rel_pos):
|
||
|
"""
|
||
|
Get relative positional embeddings according to the relative positions of query and key sizes.
|
||
|
|
||
|
Args:
|
||
|
q_size (`int`):
|
||
|
Size of query q.
|
||
|
k_size (`int`):
|
||
|
Size of key k.
|
||
|
rel_pos (`torch.Tensor`):
|
||
|
Relative position embeddings (num_embeddings, num_channels).
|
||
|
|
||
|
Returns:
|
||
|
Extracted positional embeddings according to relative positions.
|
||
|
"""
|
||
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||
|
# Interpolate rel pos if needed.
|
||
|
if rel_pos.shape[0] != max_rel_dist:
|
||
|
# Interpolate rel position embeddings.
|
||
|
rel_pos_resized = nn.functional.interpolate(
|
||
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||
|
size=max_rel_dist,
|
||
|
mode="linear",
|
||
|
)
|
||
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||
|
else:
|
||
|
rel_pos_resized = rel_pos
|
||
|
|
||
|
# Scale the coords with short length if shapes for q and k are different.
|
||
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||
|
|
||
|
return rel_pos_resized[relative_coords.long()]
|
||
|
|
||
|
|
||
|
def add_decomposed_relative_positions(attn, queries, rel_pos_h, rel_pos_w, q_size, k_size):
|
||
|
"""
|
||
|
Calculate decomposed Relative Positional Embeddings as introduced in
|
||
|
[MViT2](https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py).
|
||
|
|
||
|
Args:
|
||
|
attn (`torch.Tensor`):
|
||
|
Attention map.
|
||
|
queries (`torch.Tensor`):
|
||
|
Query q in the attention layer with shape (batch_size, queries_height * queries_width, num_channels).
|
||
|
rel_pos_h (`torch.Tensor`):
|
||
|
Relative position embeddings (Lh, num_channels) for height axis.
|
||
|
rel_pos_w (`torch.Tensor`):
|
||
|
Relative position embeddings (Lw, num_channels) for width axis.
|
||
|
q_size (`Tuple[int]`):
|
||
|
Spatial sequence size of query q with (queries_height, queries_width).
|
||
|
k_size (`Tuple[int]`]):
|
||
|
Spatial sequence size of key k with (keys_height, keys_width).
|
||
|
|
||
|
Returns:
|
||
|
attn (Tensor): attention map with added relative positional embeddings.
|
||
|
"""
|
||
|
queries_height, queries_width = q_size
|
||
|
keys_height, keys_width = k_size
|
||
|
relative_height = get_rel_pos(queries_height, keys_height, rel_pos_h)
|
||
|
relative_width = get_rel_pos(queries_width, keys_width, rel_pos_w)
|
||
|
|
||
|
batch_size, _, dim = queries.shape
|
||
|
r_q = queries.reshape(batch_size, queries_height, queries_width, dim)
|
||
|
relative_height = torch.einsum("bhwc,hkc->bhwk", r_q, relative_height)
|
||
|
relative_weight = torch.einsum("bhwc,wkc->bhwk", r_q, relative_width)
|
||
|
|
||
|
attn = (
|
||
|
attn.view(batch_size, queries_height, queries_width, keys_height, keys_width)
|
||
|
+ relative_height[:, :, :, :, None]
|
||
|
+ relative_weight[:, :, :, None, :]
|
||
|
).view(batch_size, queries_height * queries_width, keys_height * keys_width)
|
||
|
|
||
|
return attn
|
||
|
|
||
|
|
||
|
class VitDetAttention(nn.Module):
|
||
|
"""Multi-head Attention block with relative position embeddings."""
|
||
|
|
||
|
def __init__(self, config, input_size=None):
|
||
|
"""
|
||
|
Args:
|
||
|
config (`VitDetConfig`):
|
||
|
Model configuration.
|
||
|
input_size (`Tuple[int]`, *optional*):
|
||
|
Input resolution, only required in case relative position embeddings are added.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
|
||
|
dim = config.hidden_size
|
||
|
num_heads = config.num_attention_heads
|
||
|
|
||
|
self.num_heads = num_heads
|
||
|
head_dim = dim // num_heads
|
||
|
self.scale = head_dim**-0.5
|
||
|
|
||
|
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
||
|
self.proj = nn.Linear(dim, dim)
|
||
|
|
||
|
self.use_relative_position_embeddings = config.use_relative_position_embeddings
|
||
|
if self.use_relative_position_embeddings:
|
||
|
# initialize relative positional embeddings
|
||
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||
|
|
||
|
def forward(self, hidden_state, output_attentions=False):
|
||
|
batch_size, height, width, _ = hidden_state.shape
|
||
|
# qkv with shape (3, batch_size, num_heads, height * width, num_channels)
|
||
|
qkv = self.qkv(hidden_state).reshape(batch_size, height * width, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||
|
# queries, keys and values have shape (batch_size * num_heads, height * width, num_channels)
|
||
|
queries, keys, values = qkv.reshape(3, batch_size * self.num_heads, height * width, -1).unbind(0)
|
||
|
|
||
|
attention_scores = (queries * self.scale) @ keys.transpose(-2, -1)
|
||
|
|
||
|
if self.use_relative_position_embeddings:
|
||
|
attention_scores = add_decomposed_relative_positions(
|
||
|
attention_scores, queries, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width)
|
||
|
)
|
||
|
|
||
|
attention_probs = attention_scores.softmax(dim=-1)
|
||
|
|
||
|
hidden_state = attention_probs @ values
|
||
|
hidden_state = hidden_state.view(batch_size, self.num_heads, height, width, -1)
|
||
|
hidden_state = hidden_state.permute(0, 2, 3, 1, 4)
|
||
|
hidden_state = hidden_state.reshape(batch_size, height, width, -1)
|
||
|
hidden_state = self.proj(hidden_state)
|
||
|
|
||
|
if output_attentions:
|
||
|
attention_probs = attention_probs.reshape(
|
||
|
batch_size, self.num_heads, attention_probs.shape[-2], attention_probs.shape[-1]
|
||
|
)
|
||
|
outputs = (hidden_state, attention_probs)
|
||
|
else:
|
||
|
outputs = (hidden_state,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.beit.modeling_beit.drop_path
|
||
|
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
||
|
"""
|
||
|
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||
|
|
||
|
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
||
|
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
||
|
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
||
|
argument.
|
||
|
"""
|
||
|
if drop_prob == 0.0 or not training:
|
||
|
return input
|
||
|
keep_prob = 1 - drop_prob
|
||
|
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||
|
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
||
|
random_tensor.floor_() # binarize
|
||
|
output = input.div(keep_prob) * random_tensor
|
||
|
return output
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
||
|
class VitDetDropPath(nn.Module):
|
||
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
||
|
|
||
|
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
||
|
super().__init__()
|
||
|
self.drop_prob = drop_prob
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
return drop_path(hidden_states, self.drop_prob, self.training)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return "p={}".format(self.drop_prob)
|
||
|
|
||
|
|
||
|
class VitDetLayerNorm(nn.Module):
|
||
|
"""
|
||
|
A LayerNorm variant, popularized by Transformers, that performs point-wise mean and variance normalization over the
|
||
|
channel dimension for inputs that have shape (batch_size, channels, height, width).
|
||
|
https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119
|
||
|
"""
|
||
|
|
||
|
def __init__(self, normalized_shape, eps=1e-6):
|
||
|
super().__init__()
|
||
|
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||
|
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
||
|
self.eps = eps
|
||
|
self.normalized_shape = (normalized_shape,)
|
||
|
|
||
|
def forward(self, x):
|
||
|
u = x.mean(1, keepdim=True)
|
||
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
||
|
x = (x - u) / torch.sqrt(s + self.eps)
|
||
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||
|
return x
|
||
|
|
||
|
|
||
|
class VitDetResBottleneckBlock(nn.Module):
|
||
|
"""
|
||
|
The standard bottleneck residual block without the last activation layer. It contains 3 conv layers with kernels
|
||
|
1x1, 3x3, 1x1.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config, in_channels, out_channels, bottleneck_channels):
|
||
|
"""
|
||
|
Args:
|
||
|
config (`VitDetConfig`):
|
||
|
Model configuration.
|
||
|
in_channels (`int`):
|
||
|
Number of input channels.
|
||
|
out_channels (`int`):
|
||
|
Number of output channels.
|
||
|
bottleneck_channels (`int`):
|
||
|
Number of output channels for the 3x3 "bottleneck" conv layers.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.conv1 = nn.Conv2d(in_channels, bottleneck_channels, 1, bias=False)
|
||
|
self.norm1 = VitDetLayerNorm(bottleneck_channels)
|
||
|
self.act1 = ACT2FN[config.hidden_act]
|
||
|
|
||
|
self.conv2 = nn.Conv2d(bottleneck_channels, bottleneck_channels, 3, padding=1, bias=False)
|
||
|
self.norm2 = VitDetLayerNorm(bottleneck_channels)
|
||
|
self.act2 = ACT2FN[config.hidden_act]
|
||
|
|
||
|
self.conv3 = nn.Conv2d(bottleneck_channels, out_channels, 1, bias=False)
|
||
|
self.norm3 = VitDetLayerNorm(out_channels)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = x
|
||
|
for layer in self.children():
|
||
|
out = layer(out)
|
||
|
|
||
|
out = x + out
|
||
|
return out
|
||
|
|
||
|
|
||
|
class VitDetMlp(nn.Module):
|
||
|
def __init__(self, config, in_features: int, hidden_features: int) -> None:
|
||
|
super().__init__()
|
||
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
||
|
self.act = ACT2FN[config.hidden_act]
|
||
|
self.fc2 = nn.Linear(hidden_features, in_features)
|
||
|
self.drop = nn.Dropout(config.dropout_prob)
|
||
|
|
||
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
x = self.fc1(x)
|
||
|
x = self.act(x)
|
||
|
x = self.drop(x)
|
||
|
x = self.fc2(x)
|
||
|
x = self.drop(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
def window_partition(hidden_state, window_size):
|
||
|
"""
|
||
|
Partition into non-overlapping windows with padding if needed.
|
||
|
|
||
|
Args:
|
||
|
hidden_state (`torch.Tensor`):
|
||
|
Input tokens with [batch_size, height, width, num_channels].
|
||
|
window_size (`int`):
|
||
|
Window size.
|
||
|
|
||
|
Returns:
|
||
|
`tuple(torch.FloatTensor)` comprising various elements:
|
||
|
- windows: windows after partition with [batch_size * num_windows, window_size, window_size, num_channels].
|
||
|
- (padded_height, padded_width): padded height and width before partition
|
||
|
"""
|
||
|
batch_size, height, width, num_channels = hidden_state.shape
|
||
|
|
||
|
pad_height = (window_size - height % window_size) % window_size
|
||
|
pad_width = (window_size - width % window_size) % window_size
|
||
|
|
||
|
# Noop in case pad_width == 0 and pad_height == 0.
|
||
|
hidden_state = nn.functional.pad(hidden_state, (0, 0, 0, pad_width, 0, pad_height))
|
||
|
|
||
|
padded_height, padded_width = height + pad_height, width + pad_width
|
||
|
|
||
|
hidden_state = hidden_state.view(
|
||
|
batch_size, padded_height // window_size, window_size, padded_width // window_size, window_size, num_channels
|
||
|
)
|
||
|
windows = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, num_channels)
|
||
|
return windows, (padded_height, padded_width)
|
||
|
|
||
|
|
||
|
def window_unpartition(windows, window_size, pad_height_width, height_width):
|
||
|
"""
|
||
|
Window unpartition into original sequences and removing padding.
|
||
|
|
||
|
Args:
|
||
|
windows (`torch.Tensor`):
|
||
|
Input tokens with [batch_size * num_windows, window_size, window_size, num_channels].
|
||
|
window_size (`int`):
|
||
|
Window size.
|
||
|
pad_height_width (`Tuple[int]`):
|
||
|
Padded height and width (padded_height, padded_width).
|
||
|
height_width (`Tuple[int]`):
|
||
|
Original height and width before padding.
|
||
|
|
||
|
Returns:
|
||
|
hidden_state: unpartitioned sequences with [batch_size, height, width, num_channels].
|
||
|
"""
|
||
|
padded_height, padded_width = pad_height_width
|
||
|
height, width = height_width
|
||
|
batch_size = windows.shape[0] // (padded_height * padded_width // window_size // window_size)
|
||
|
hidden_state = windows.view(
|
||
|
batch_size, padded_height // window_size, padded_width // window_size, window_size, window_size, -1
|
||
|
)
|
||
|
hidden_state = hidden_state.permute(0, 1, 3, 2, 4, 5).contiguous()
|
||
|
hidden_state = hidden_state.view(batch_size, padded_height, padded_width, -1)
|
||
|
|
||
|
# We always have height <= padded_height and width <= padded_width
|
||
|
hidden_state = hidden_state[:, :height, :width, :].contiguous()
|
||
|
return hidden_state
|
||
|
|
||
|
|
||
|
class VitDetLayer(nn.Module):
|
||
|
"""This corresponds to the Block class in the original implementation."""
|
||
|
|
||
|
def __init__(
|
||
|
self, config: VitDetConfig, drop_path_rate: float = 0, window_size: int = 0, use_residual_block: bool = False
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
|
||
|
dim = config.hidden_size
|
||
|
input_size = (config.image_size // config.patch_size, config.image_size // config.patch_size)
|
||
|
|
||
|
self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||
|
self.attention = VitDetAttention(
|
||
|
config, input_size=input_size if window_size == 0 else (window_size, window_size)
|
||
|
)
|
||
|
|
||
|
self.drop_path = VitDetDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
||
|
self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
||
|
self.mlp = VitDetMlp(config=config, in_features=dim, hidden_features=int(dim * config.mlp_ratio))
|
||
|
|
||
|
self.window_size = window_size
|
||
|
|
||
|
self.use_residual_block = use_residual_block
|
||
|
if self.use_residual_block:
|
||
|
# Use a residual block with bottleneck channel as dim // 2
|
||
|
self.residual = VitDetResBottleneckBlock(
|
||
|
config=config,
|
||
|
in_channels=dim,
|
||
|
out_channels=dim,
|
||
|
bottleneck_channels=dim // 2,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
||
|
hidden_states = hidden_states.permute(0, 2, 3, 1)
|
||
|
|
||
|
shortcut = hidden_states
|
||
|
|
||
|
hidden_states = self.norm1(hidden_states)
|
||
|
|
||
|
# Window partition
|
||
|
if self.window_size > 0:
|
||
|
height, width = hidden_states.shape[1], hidden_states.shape[2]
|
||
|
hidden_states, pad_height_width = window_partition(hidden_states, self.window_size)
|
||
|
|
||
|
self_attention_outputs = self.attention(
|
||
|
hidden_states,
|
||
|
output_attentions=output_attentions,
|
||
|
)
|
||
|
hidden_states = self_attention_outputs[0]
|
||
|
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
||
|
|
||
|
# Reverse window partition
|
||
|
if self.window_size > 0:
|
||
|
hidden_states = window_unpartition(hidden_states, self.window_size, pad_height_width, (height, width))
|
||
|
|
||
|
# first residual connection
|
||
|
hidden_states = shortcut + self.drop_path(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states + self.drop_path(self.mlp(self.norm2(hidden_states)))
|
||
|
|
||
|
hidden_states = hidden_states.permute(0, 3, 1, 2)
|
||
|
|
||
|
if self.use_residual_block:
|
||
|
hidden_states = self.residual(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,) + outputs
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class VitDetEncoder(nn.Module):
|
||
|
def __init__(self, config: VitDetConfig) -> None:
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
depth = config.num_hidden_layers
|
||
|
|
||
|
# stochastic depth decay rule
|
||
|
drop_path_rate = [x.item() for x in torch.linspace(0, config.drop_path_rate, depth)]
|
||
|
|
||
|
layers = []
|
||
|
for i in range(depth):
|
||
|
layers.append(
|
||
|
VitDetLayer(
|
||
|
config,
|
||
|
drop_path_rate=drop_path_rate[i],
|
||
|
window_size=config.window_size if i in config.window_block_indices else 0,
|
||
|
use_residual_block=i in config.residual_block_indices,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
self.layer = nn.ModuleList(layers)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
) -> Union[tuple, BaseModelOutput]:
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
for i, layer_module in enumerate(self.layer):
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
layer_head_mask = head_mask[i] if head_mask is not None else None
|
||
|
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer_module.__call__,
|
||
|
hidden_states,
|
||
|
layer_head_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
|
||
|
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
def caffe2_msra_fill(module: nn.Module) -> None:
|
||
|
"""
|
||
|
Initialize `module.weight` using the "MSRAFill" implemented in Caffe2. Also initializes `module.bias` to 0.
|
||
|
|
||
|
Source: https://detectron2.readthedocs.io/en/latest/_modules/fvcore/nn/weight_init.html.
|
||
|
|
||
|
Args:
|
||
|
module (torch.nn.Module): module to initialize.
|
||
|
"""
|
||
|
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
||
|
if module.bias is not None:
|
||
|
nn.init.constant_(module.bias, 0)
|
||
|
|
||
|
|
||
|
class VitDetPreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = VitDetConfig
|
||
|
base_model_prefix = "vitdet"
|
||
|
main_input_name = "pixel_values"
|
||
|
supports_gradient_checkpointing = True
|
||
|
_no_split_modules = []
|
||
|
|
||
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
||
|
"""Initialize the weights"""
|
||
|
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||
|
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
||
|
# `trunc_normal_cpu` not implemented in `half` issues
|
||
|
module.weight.data = nn.init.trunc_normal_(
|
||
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
|
||
|
).to(module.weight.dtype)
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, nn.LayerNorm):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
|
||
|
elif isinstance(module, VitDetEmbeddings):
|
||
|
module.position_embeddings.data = nn.init.trunc_normal_(
|
||
|
module.position_embeddings.data.to(torch.float32),
|
||
|
mean=0.0,
|
||
|
std=self.config.initializer_range,
|
||
|
).to(module.position_embeddings.dtype)
|
||
|
|
||
|
elif isinstance(module, VitDetAttention) and self.config.use_relative_position_embeddings:
|
||
|
module.rel_pos_h.data = nn.init.trunc_normal_(
|
||
|
module.rel_pos_h.data.to(torch.float32),
|
||
|
mean=0.0,
|
||
|
std=self.config.initializer_range,
|
||
|
)
|
||
|
module.rel_pos_w.data = nn.init.trunc_normal_(
|
||
|
module.rel_pos_w.data.to(torch.float32),
|
||
|
mean=0.0,
|
||
|
std=self.config.initializer_range,
|
||
|
)
|
||
|
|
||
|
elif isinstance(module, VitDetResBottleneckBlock):
|
||
|
for layer in [module.conv1, module.conv2, module.conv3]:
|
||
|
caffe2_msra_fill(layer)
|
||
|
for layer in [module.norm1, module.norm2]:
|
||
|
layer.weight.data.fill_(1.0)
|
||
|
layer.bias.data.zero_()
|
||
|
# zero init last norm layer.
|
||
|
module.norm3.weight.data.zero_()
|
||
|
module.norm3.bias.data.zero_()
|
||
|
|
||
|
|
||
|
VITDET_START_DOCSTRING = r"""
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
||
|
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`VitDetConfig`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
VITDET_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
||
|
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
||
|
for details.
|
||
|
|
||
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
|
||
|
- 1 indicates the head is **not masked**,
|
||
|
- 0 indicates the head is **masked**.
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare VitDet Transformer model outputting raw hidden-states without any specific head on top.",
|
||
|
VITDET_START_DOCSTRING,
|
||
|
)
|
||
|
class VitDetModel(VitDetPreTrainedModel):
|
||
|
def __init__(self, config: VitDetConfig):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
|
||
|
self.embeddings = VitDetEmbeddings(config)
|
||
|
self.encoder = VitDetEncoder(config)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> VitDetEmbeddings:
|
||
|
return self.embeddings.projection
|
||
|
|
||
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
||
|
"""
|
||
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
||
|
class PreTrainedModel
|
||
|
"""
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
self.encoder.layer[layer].attention.prune_heads(heads)
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: Optional[torch.Tensor] = None,
|
||
|
head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, BaseModelOutput]:
|
||
|
"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import VitDetConfig, VitDetModel
|
||
|
>>> import torch
|
||
|
|
||
|
>>> config = VitDetConfig()
|
||
|
>>> model = VitDetModel(config)
|
||
|
|
||
|
>>> pixel_values = torch.randn(1, 3, 224, 224)
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(pixel_values)
|
||
|
|
||
|
>>> last_hidden_states = outputs.last_hidden_state
|
||
|
>>> list(last_hidden_states.shape)
|
||
|
[1, 768, 14, 14]
|
||
|
```"""
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if pixel_values is None:
|
||
|
raise ValueError("You have to specify pixel_values")
|
||
|
|
||
|
# Prepare head mask if needed
|
||
|
# 1.0 in head_mask indicate we keep the head
|
||
|
# attention_probs has shape bsz x n_heads x N x N
|
||
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||
|
|
||
|
embedding_output = self.embeddings(pixel_values)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
head_mask=head_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
sequence_output = encoder_outputs[0]
|
||
|
|
||
|
if not return_dict:
|
||
|
return (sequence_output,) + encoder_outputs[1:]
|
||
|
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=sequence_output,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
ViTDet backbone, to be used with frameworks like Mask R-CNN.
|
||
|
""",
|
||
|
VITDET_START_DOCSTRING,
|
||
|
)
|
||
|
class VitDetBackbone(VitDetPreTrainedModel, BackboneMixin):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
super()._init_backbone(config)
|
||
|
|
||
|
self.embeddings = VitDetEmbeddings(config)
|
||
|
self.encoder = VitDetEncoder(config)
|
||
|
self.num_features = [config.hidden_size for _ in range(config.num_hidden_layers + 1)]
|
||
|
|
||
|
# initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def get_input_embeddings(self) -> VitDetEmbeddings:
|
||
|
return self.embeddings.projection
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(VITDET_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
pixel_values: torch.Tensor,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> BackboneOutput:
|
||
|
"""
|
||
|
Returns:
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import VitDetConfig, VitDetBackbone
|
||
|
>>> import torch
|
||
|
|
||
|
>>> config = VitDetConfig()
|
||
|
>>> model = VitDetBackbone(config)
|
||
|
|
||
|
>>> pixel_values = torch.randn(1, 3, 224, 224)
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(pixel_values)
|
||
|
|
||
|
>>> feature_maps = outputs.feature_maps
|
||
|
>>> list(feature_maps[-1].shape)
|
||
|
[1, 768, 14, 14]
|
||
|
```"""
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
|
||
|
embedding_output = self.embeddings(pixel_values)
|
||
|
|
||
|
outputs = self.encoder(
|
||
|
embedding_output,
|
||
|
output_hidden_states=True,
|
||
|
output_attentions=output_attentions,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
||
|
|
||
|
feature_maps = ()
|
||
|
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
||
|
if stage in self.out_features:
|
||
|
feature_maps += (hidden_state,)
|
||
|
|
||
|
if not return_dict:
|
||
|
if output_hidden_states:
|
||
|
output = (feature_maps,) + outputs[1:]
|
||
|
else:
|
||
|
output = (feature_maps,) + outputs[2:]
|
||
|
return output
|
||
|
|
||
|
return BackboneOutput(
|
||
|
feature_maps=feature_maps,
|
||
|
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|