ai-content-maker/.venv/Lib/site-packages/transformers/models/vits/modeling_vits.py

1484 lines
65 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch VITS model."""
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
ModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_vits import VitsConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "VitsConfig"
from ..deprecated._archive_maps import VITS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
@dataclass
class VitsModelOutput(ModelOutput):
"""
Describes the outputs for the VITS model, with potential hidden states and attentions.
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The final audio waveform predicted by the model.
sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
The length in samples of each element in the `waveform` batch.
spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi
GAN decoder model to obtain the final audio waveform.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
waveform: torch.FloatTensor = None
sequence_lengths: torch.FloatTensor = None
spectrogram: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class VitsTextEncoderOutput(ModelOutput):
"""
Describes the outputs for the VITS text encoder model, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The predicted mean values of the prior distribution for the latent text variables.
prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The predicted log-variance values of the prior distribution for the latent text variables.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attention weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: torch.FloatTensor = None
prior_means: torch.FloatTensor = None
prior_log_variances: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :num_channels, :])
s_act = torch.sigmoid(in_act[:, num_channels:, :])
acts = t_act * s_act
return acts
def _unconstrained_rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse=False,
tail_bound=5.0,
min_bin_width=1e-3,
min_bin_height=1e-3,
min_derivative=1e-3,
):
"""
This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the
`tail_bound`, the transform behaves as an identity function.
Args:
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Second half of the hidden-states input to the Vits convolutional flow module.
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
reverse (`bool`, *optional*, defaults to `False`):
Whether the model is being run in reverse mode.
tail_bound (`float`, *optional* defaults to 5):
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
transform behaves as an identity function.
min_bin_width (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the width dimension for the piecewise rational quadratic function.
min_bin_height (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the height dimension for the piecewise rational quadratic function.
min_derivative (`float`, *optional*, defaults to 1e-3):
Minimum bin value across the derivatives for the piecewise rational quadratic function.
Returns:
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits
applied.
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound`
limits applied.
"""
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
outside_interval_mask = ~inside_interval_mask
outputs = torch.zeros_like(inputs)
log_abs_det = torch.zeros_like(inputs)
constant = np.log(np.exp(1 - min_derivative) - 1)
unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1))
unnormalized_derivatives[..., 0] = constant
unnormalized_derivatives[..., -1] = constant
outputs[outside_interval_mask] = inputs[outside_interval_mask]
log_abs_det[outside_interval_mask] = 0.0
outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline(
inputs=inputs[inside_interval_mask],
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
reverse=reverse,
tail_bound=tail_bound,
min_bin_width=min_bin_width,
min_bin_height=min_bin_height,
min_derivative=min_derivative,
)
return outputs, log_abs_det
def _rational_quadratic_spline(
inputs,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse,
tail_bound,
min_bin_width,
min_bin_height,
min_derivative,
):
"""
This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the
function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`.
Args:
inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Second half of the hidden-states input to the Vits convolutional flow module.
unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
layer in the convolutional flow module
reverse (`bool`):
Whether the model is being run in reverse mode.
tail_bound (`float`):
Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
transform behaves as an identity function.
min_bin_width (`float`):
Minimum bin value across the width dimension for the piecewise rational quadratic function.
min_bin_height (`float`):
Minimum bin value across the height dimension for the piecewise rational quadratic function.
min_derivative (`float`):
Minimum bin value across the derivatives for the piecewise rational quadratic function.
Returns:
outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Hidden-states as transformed by the piecewise rational quadratic function.
log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
Logarithm of the absolute value of the determinants corresponding to the `outputs`.
"""
upper_bound = tail_bound
lower_bound = -tail_bound
if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound:
raise ValueError("Input to a transform is not within its domain")
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0:
raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}")
if min_bin_height * num_bins > 1.0:
raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}")
widths = nn.functional.softmax(unnormalized_widths, dim=-1)
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
cumwidths = torch.cumsum(widths, dim=-1)
cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound
cumwidths[..., 0] = lower_bound
cumwidths[..., -1] = upper_bound
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives)
heights = nn.functional.softmax(unnormalized_heights, dim=-1)
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
cumheights = torch.cumsum(heights, dim=-1)
cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
cumheights = (upper_bound - lower_bound) * cumheights + lower_bound
cumheights[..., 0] = lower_bound
cumheights[..., -1] = upper_bound
heights = cumheights[..., 1:] - cumheights[..., :-1]
bin_locations = cumheights if reverse else cumwidths
bin_locations[..., -1] += 1e-6
bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
bin_idx = bin_idx[..., None]
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
delta = heights / widths
input_delta = delta.gather(-1, bin_idx)[..., 0]
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
input_heights = heights.gather(-1, bin_idx)[..., 0]
intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta
if not reverse:
theta = (inputs - input_cumwidths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + intermediate1 * theta_one_minus_theta
outputs = input_cumheights + numerator / denominator
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * theta.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - theta).pow(2)
)
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, log_abs_det
else:
# find the roots of a quadratic equation
intermediate2 = inputs - input_cumheights
intermediate3 = intermediate2 * intermediate1
a = input_heights * (input_delta - input_derivatives) + intermediate3
b = input_heights * input_derivatives - intermediate3
c = -input_delta * intermediate2
discriminant = b.pow(2) - 4 * a * c
if not (discriminant >= 0).all():
raise RuntimeError(f"invalid discriminant {discriminant}")
root = (2 * c) / (-b - torch.sqrt(discriminant))
outputs = root * input_bin_widths + input_cumwidths
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + intermediate1 * theta_one_minus_theta
derivative_numerator = input_delta.pow(2) * (
input_derivatives_plus_one * root.pow(2)
+ 2 * input_delta * theta_one_minus_theta
+ input_derivatives * (1 - root).pow(2)
)
log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
return outputs, -log_abs_det
class VitsWaveNet(torch.nn.Module):
def __init__(self, config: VitsConfig, num_layers: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_layers = num_layers
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.dropout = nn.Dropout(config.wavenet_dropout)
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
else:
weight_norm = nn.utils.weight_norm
if config.speaker_embedding_size != 0:
cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
self.cond_layer = weight_norm(cond_layer, name="weight")
for i in range(num_layers):
dilation = config.wavenet_dilation_rate**i
padding = (config.wavenet_kernel_size * dilation - dilation) // 2
in_layer = torch.nn.Conv1d(
in_channels=config.hidden_size,
out_channels=2 * config.hidden_size,
kernel_size=config.wavenet_kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < num_layers - 1:
res_skip_channels = 2 * config.hidden_size
else:
res_skip_channels = config.hidden_size
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, inputs, padding_mask, global_conditioning=None):
outputs = torch.zeros_like(inputs)
num_channels_tensor = torch.IntTensor([self.hidden_size])
if global_conditioning is not None:
global_conditioning = self.cond_layer(global_conditioning)
for i in range(self.num_layers):
hidden_states = self.in_layers[i](inputs)
if global_conditioning is not None:
cond_offset = i * 2 * self.hidden_size
global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
else:
global_states = torch.zeros_like(hidden_states)
acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
acts = self.dropout(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.num_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_size, :]
inputs = (inputs + res_acts) * padding_mask
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
else:
outputs = outputs + res_skip_acts
return outputs * padding_mask
def remove_weight_norm(self):
if self.speaker_embedding_size != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for layer in self.in_layers:
torch.nn.utils.remove_weight_norm(layer)
for layer in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(layer)
class VitsPosteriorEncoder(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.out_channels = config.flow_size
self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers)
self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1)
def forward(self, inputs, padding_mask, global_conditioning=None):
inputs = self.conv_pre(inputs) * padding_mask
inputs = self.wavenet(inputs, padding_mask, global_conditioning)
stats = self.conv_proj(inputs) * padding_mask
mean, log_stddev = torch.split(stats, self.out_channels, dim=1)
sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask
return sampled, mean, log_stddev
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
for layer in self.convs1:
nn.utils.weight_norm(layer)
for layer in self.convs2:
nn.utils.weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class VitsHifiGan(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
config.flow_size,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
if config.speaker_embedding_size != 0:
self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
def apply_weight_norm(self):
for layer in self.upsampler:
nn.utils.weight_norm(layer)
for layer in self.resblocks:
layer.apply_weight_norm()
def remove_weight_norm(self):
for layer in self.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.resblocks:
layer.remove_weight_norm()
def forward(
self, spectrogram: torch.FloatTensor, global_conditioning: Optional[torch.FloatTensor] = None
) -> torch.FloatTensor:
r"""
Converts a spectrogram into a speech waveform.
Args:
spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
Tensor containing the spectrograms.
global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
Tensor containing speaker embeddings, for multispeaker models.
Returns:
`torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
"""
hidden_states = self.conv_pre(spectrogram)
if global_conditioning is not None:
hidden_states = hidden_states + self.cond(global_conditioning)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
waveform = torch.tanh(hidden_states)
return waveform
class VitsResidualCouplingLayer(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.half_channels = config.flow_size // 2
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half) * padding_mask
hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
mean = self.conv_post(hidden_states) * padding_mask
log_stddev = torch.zeros_like(mean)
if not reverse:
second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
log_determinant = torch.sum(log_stddev, [1, 2])
return outputs, log_determinant
else:
second_half = (second_half - mean) * torch.exp(-log_stddev) * padding_mask
outputs = torch.cat([first_half, second_half], dim=1)
return outputs, None
class VitsResidualCouplingBlock(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.flows = nn.ModuleList()
for _ in range(config.prior_encoder_num_flows):
self.flows.append(VitsResidualCouplingLayer(config))
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
if not reverse:
for flow in self.flows:
inputs, _ = flow(inputs, padding_mask, global_conditioning)
inputs = torch.flip(inputs, [1])
else:
for flow in reversed(self.flows):
inputs = torch.flip(inputs, [1])
inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
return inputs
class VitsDilatedDepthSeparableConv(nn.Module):
def __init__(self, config: VitsConfig, dropout_rate=0.0):
super().__init__()
kernel_size = config.duration_predictor_kernel_size
channels = config.hidden_size
self.num_layers = config.depth_separable_num_layers
self.dropout = nn.Dropout(dropout_rate)
self.convs_dilated = nn.ModuleList()
self.convs_pointwise = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(self.num_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_dilated.append(
nn.Conv1d(
in_channels=channels,
out_channels=channels,
kernel_size=kernel_size,
groups=channels,
dilation=dilation,
padding=padding,
)
)
self.convs_pointwise.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(nn.LayerNorm(channels))
self.norms_2.append(nn.LayerNorm(channels))
def forward(self, inputs, padding_mask, global_conditioning=None):
if global_conditioning is not None:
inputs = inputs + global_conditioning
for i in range(self.num_layers):
hidden_states = self.convs_dilated[i](inputs * padding_mask)
hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1)
hidden_states = nn.functional.gelu(hidden_states)
hidden_states = self.convs_pointwise[i](hidden_states)
hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1)
hidden_states = nn.functional.gelu(hidden_states)
hidden_states = self.dropout(hidden_states)
inputs = inputs + hidden_states
return inputs * padding_mask
class VitsConvFlow(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.filter_channels = config.hidden_size
self.half_channels = config.depth_separable_channels // 2
self.num_bins = config.duration_predictor_flow_bins
self.tail_bound = config.duration_predictor_tail_bound
self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1)
self.conv_dds = VitsDilatedDepthSeparableConv(config)
self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1)
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
hidden_states = self.conv_pre(first_half)
hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning)
hidden_states = self.conv_proj(hidden_states) * padding_mask
batch_size, channels, length = first_half.shape
hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2)
unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :]
second_half, log_abs_det = _unconstrained_rational_quadratic_spline(
second_half,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
reverse=reverse,
tail_bound=self.tail_bound,
)
outputs = torch.cat([first_half, second_half], dim=1) * padding_mask
if not reverse:
log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2])
return outputs, log_determinant
else:
return outputs, None
class VitsElementwiseAffine(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.channels = config.depth_separable_channels
self.translate = nn.Parameter(torch.zeros(self.channels, 1))
self.log_scale = nn.Parameter(torch.zeros(self.channels, 1))
def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
if not reverse:
outputs = self.translate + torch.exp(self.log_scale) * inputs
outputs = outputs * padding_mask
log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2])
return outputs, log_determinant
else:
outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask
return outputs, None
class VitsStochasticDurationPredictor(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.speaker_embedding_size
filter_channels = config.hidden_size
self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1)
self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.conv_dds = VitsDilatedDepthSeparableConv(
config,
dropout_rate=config.duration_predictor_dropout,
)
if embed_dim != 0:
self.cond = nn.Conv1d(embed_dim, filter_channels, 1)
self.flows = nn.ModuleList()
self.flows.append(VitsElementwiseAffine(config))
for _ in range(config.duration_predictor_num_flows):
self.flows.append(VitsConvFlow(config))
self.post_conv_pre = nn.Conv1d(1, filter_channels, 1)
self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
self.post_conv_dds = VitsDilatedDepthSeparableConv(
config,
dropout_rate=config.duration_predictor_dropout,
)
self.post_flows = nn.ModuleList()
self.post_flows.append(VitsElementwiseAffine(config))
for _ in range(config.duration_predictor_num_flows):
self.post_flows.append(VitsConvFlow(config))
def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0):
inputs = torch.detach(inputs)
inputs = self.conv_pre(inputs)
if global_conditioning is not None:
global_conditioning = torch.detach(global_conditioning)
inputs = inputs + self.cond(global_conditioning)
inputs = self.conv_dds(inputs, padding_mask)
inputs = self.conv_proj(inputs) * padding_mask
if not reverse:
hidden_states = self.post_conv_pre(durations)
hidden_states = self.post_conv_dds(hidden_states, padding_mask)
hidden_states = self.post_conv_proj(hidden_states) * padding_mask
random_posterior = (
torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype)
* padding_mask
)
log_determinant_posterior_sum = 0
latents_posterior = random_posterior
for flow in self.post_flows:
latents_posterior, log_determinant = flow(
latents_posterior, padding_mask, global_conditioning=inputs + hidden_states
)
latents_posterior = torch.flip(latents_posterior, [1])
log_determinant_posterior_sum += log_determinant
first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1)
log_determinant_posterior_sum += torch.sum(
(nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2]
)
logq = (
torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2])
- log_determinant_posterior_sum
)
first_half = (durations - torch.sigmoid(first_half)) * padding_mask
first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask
log_determinant_sum = torch.sum(-first_half, [1, 2])
latents = torch.cat([first_half, second_half], dim=1)
for flow in self.flows:
latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs)
latents = torch.flip(latents, [1])
log_determinant_sum += log_determinant
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum
return nll + logq
else:
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
latents = (
torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype)
* noise_scale
)
for flow in flows:
latents = torch.flip(latents, [1])
latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True)
log_duration, _ = torch.split(latents, [1, 1], dim=1)
return log_duration
class VitsDurationPredictor(nn.Module):
def __init__(self, config):
super().__init__()
kernel_size = config.duration_predictor_kernel_size
filter_channels = config.duration_predictor_filter_channels
self.dropout = nn.Dropout(config.duration_predictor_dropout)
self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if config.speaker_embedding_size != 0:
self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1)
def forward(self, inputs, padding_mask, global_conditioning=None):
inputs = torch.detach(inputs)
if global_conditioning is not None:
global_conditioning = torch.detach(global_conditioning)
inputs = inputs + self.cond(global_conditioning)
inputs = self.conv_1(inputs * padding_mask)
inputs = torch.relu(inputs)
inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1)
inputs = self.dropout(inputs)
inputs = self.conv_2(inputs * padding_mask)
inputs = torch.relu(inputs)
inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1)
inputs = self.dropout(inputs)
inputs = self.proj(inputs * padding_mask)
return inputs * padding_mask
class VitsAttention(nn.Module):
"""Multi-headed attention with relative positional representation."""
def __init__(self, config: VitsConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.window_size = config.window_size
self.head_dim = self.embed_dim // self.num_heads
self.scaling = self.head_dim**-0.5
if (self.head_dim * self.num_heads) != self.embed_dim:
raise ValueError(
f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}"
f" and `num_attention_heads`: {self.num_heads})."
)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
if self.window_size:
self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if self.window_size is not None:
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len)
relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1))
rel_pos_bias = self._relative_position_to_absolute_position(relative_logits)
attn_weights += rel_pos_bias
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
if self.window_size is not None:
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len)
relative_weights = self._absolute_position_to_relative_position(attn_probs)
rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings)
attn_output += rel_pos_bias
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
def _get_relative_embeddings(self, relative_embeddings, length):
pad_length = max(length - (self.window_size + 1), 0)
if pad_length > 0:
relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
return relative_embeddings[:, slice_start_position:slice_end_position]
def _relative_position_to_absolute_position(self, x):
batch_heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0])
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch_heads, length * 2 * length])
x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0])
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1])
x_final = x_final[:, :length, length - 1 :]
return x_final
def _absolute_position_to_relative_position(self, x):
batch_heads, length, _ = x.size()
# Pad along column
x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0])
x_flat = x.view([batch_heads, length * (2 * length - 1)])
# Add 0's in the beginning that will skew the elements after reshape
x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0])
x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:]
return x_final
class VitsFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size)
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size)
self.dropout = nn.Dropout(config.activation_dropout)
if isinstance(config.hidden_act, str):
self.act_fn = ACT2FN[config.hidden_act]
else:
self.act_fn = config.hidden_act
if config.ffn_kernel_size > 1:
pad_left = (config.ffn_kernel_size - 1) // 2
pad_right = config.ffn_kernel_size // 2
self.padding = [pad_left, pad_right, 0, 0, 0, 0]
else:
self.padding = None
def forward(self, hidden_states, padding_mask):
hidden_states = hidden_states.permute(0, 2, 1)
padding_mask = padding_mask.permute(0, 2, 1)
hidden_states = hidden_states * padding_mask
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states * padding_mask
if self.padding is not None:
hidden_states = nn.functional.pad(hidden_states, self.padding)
hidden_states = self.conv_2(hidden_states)
hidden_states = hidden_states * padding_mask
hidden_states = hidden_states.permute(0, 2, 1)
return hidden_states
class VitsEncoderLayer(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.attention = VitsAttention(config)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = VitsFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states, attn_weights = self.attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(residual + hidden_states)
residual = hidden_states
hidden_states = self.feed_forward(hidden_states, padding_mask)
hidden_states = self.dropout(hidden_states)
hidden_states = self.final_layer_norm(residual + hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class VitsEncoder(nn.Module):
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.layerdrop = config.layerdrop
def forward(
self,
hidden_states: torch.FloatTensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
hidden_states = hidden_states * padding_mask
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for encoder_layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = np.random.uniform(0, 1)
skip_the_layer = self.training and (dropout_probability < self.layerdrop)
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
padding_mask,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
padding_mask=padding_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = hidden_states * padding_mask
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class VitsTextEncoder(nn.Module):
"""
Transformer encoder that uses relative positional representation instead of absolute positional encoding.
"""
def __init__(self, config: VitsConfig):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.encoder = VitsEncoder(config)
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.Tensor,
padding_mask: torch.FloatTensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], VitsTextEncoderOutput]:
hidden_states = self.embed_tokens(input_ids) * math.sqrt(self.config.hidden_size)
encoder_outputs = self.encoder(
hidden_states=hidden_states,
padding_mask=padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state
stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask
prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)
if not return_dict:
outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:]
return outputs
return VitsTextEncoderOutput(
last_hidden_state=last_hidden_state,
prior_means=prior_means,
prior_log_variances=prior_log_variances,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class VitsPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitsConfig
base_model_prefix = "vits"
main_input_name = "input_ids"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
VITS_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`VitsConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITS_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
speaker_id (`int`, *optional*):
Which speaker embedding to use. Only used for multispeaker models.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The complete VITS model, for text-to-speech synthesis.",
VITS_START_DOCSTRING,
)
class VitsModel(VitsPreTrainedModel):
def __init__(self, config: VitsConfig):
super().__init__(config)
self.config = config
self.text_encoder = VitsTextEncoder(config)
self.flow = VitsResidualCouplingBlock(config)
self.decoder = VitsHifiGan(config)
if config.use_stochastic_duration_prediction:
self.duration_predictor = VitsStochasticDurationPredictor(config)
else:
self.duration_predictor = VitsDurationPredictor(config)
if config.num_speakers > 1:
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
# This is used only for training.
self.posterior_encoder = VitsPosteriorEncoder(config)
# These parameters control the synthesised speech properties
self.speaking_rate = config.speaking_rate
self.noise_scale = config.noise_scale
self.noise_scale_duration = config.noise_scale_duration
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.text_encoder
@add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
speaker_id: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.FloatTensor] = None,
) -> Union[Tuple[Any], VitsModelOutput]:
r"""
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
computation.
Returns:
Example:
```python
>>> from transformers import VitsTokenizer, VitsModel, set_seed
>>> import torch
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng")
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
>>> set_seed(555) # make deterministic
>>> with torch.no_grad():
... outputs = model(inputs["input_ids"])
>>> outputs.waveform.shape
torch.Size([1, 45824])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if attention_mask is not None:
input_padding_mask = attention_mask.unsqueeze(-1).float()
else:
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
if self.config.num_speakers > 1 and speaker_id is not None:
if not 0 <= speaker_id < self.config.num_speakers:
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
if isinstance(speaker_id, int):
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
else:
speaker_embeddings = None
if labels is not None:
raise NotImplementedError("Training of VITS is not supported yet.")
text_encoder_output = self.text_encoder(
input_ids=input_ids,
padding_mask=input_padding_mask,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
hidden_states = hidden_states.transpose(1, 2)
input_padding_mask = input_padding_mask.transpose(1, 2)
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
if self.config.use_stochastic_duration_prediction:
log_duration = self.duration_predictor(
hidden_states,
input_padding_mask,
speaker_embeddings,
reverse=True,
noise_scale=self.noise_scale_duration,
)
else:
log_duration = self.duration_predictor(hidden_states, input_padding_mask, speaker_embeddings)
length_scale = 1.0 / self.speaking_rate
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
# Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
batch_size, _, output_length, input_length = attn_mask.shape
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
valid_indices = indices.unsqueeze(0) < cum_duration
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
# Expand prior distribution
prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
latents = self.flow(prior_latents, output_padding_mask, speaker_embeddings, reverse=True)
spectrogram = latents * output_padding_mask
waveform = self.decoder(spectrogram, speaker_embeddings)
waveform = waveform.squeeze(1)
sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
if not return_dict:
outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
return outputs
return VitsModelOutput(
waveform=waveform,
sequence_lengths=sequence_lengths,
spectrogram=spectrogram,
hidden_states=text_encoder_output.hidden_states,
attentions=text_encoder_output.attentions,
)