ai-content-maker/.venv/Lib/site-packages/transformers/models/vits/tokenization_vits.py

238 lines
8.7 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2023 The Kakao Enterprise Authors, the MMS-TTS Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization class for VITS."""
import json
import os
import re
from typing import Any, Dict, List, Optional, Tuple, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_phonemizer_available, logging
if is_phonemizer_available():
import phonemizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
def has_non_roman_characters(input_string):
# Find any character outside the ASCII range
non_roman_pattern = re.compile(r"[^\x00-\x7F]")
# Search the input string for non-Roman characters
match = non_roman_pattern.search(input_string)
has_non_roman = match is not None
return has_non_roman
class VitsTokenizer(PreTrainedTokenizer):
"""
Construct a VITS tokenizer. Also supports MMS-TTS.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
language (`str`, *optional*):
Language identifier.
add_blank (`bool`, *optional*, defaults to `True`):
Whether to insert token id 0 in between the other tokens.
normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the input text by removing all casing and punctuation.
phonemize (`bool`, *optional*, defaults to `True`):
Whether to convert the input text into phonemes.
is_uroman (`bool`, *optional*, defaults to `False`):
Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
unk_token="<unk>",
language=None,
add_blank=True,
normalize=True,
phonemize=True,
is_uroman=False,
**kwargs,
) -> None:
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.language = language
self.add_blank = add_blank
self.normalize = normalize
self.phonemize = phonemize
self.is_uroman = is_uroman
super().__init__(
pad_token=pad_token,
unk_token=unk_token,
language=language,
add_blank=add_blank,
normalize=normalize,
phonemize=phonemize,
is_uroman=is_uroman,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def normalize_text(self, input_string):
"""Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
filtered_text = ""
i = 0
while i < len(input_string):
found_match = False
for word in all_vocabulary:
if input_string[i : i + len(word)] == word:
filtered_text += word
i += len(word)
found_match = True
break
if not found_match:
filtered_text += input_string[i].lower()
i += 1
return filtered_text
def _preprocess_char(self, text):
"""Special treatment of characters in certain languages"""
if self.language == "ron":
text = text.replace("ț", "ţ")
return text
def prepare_for_tokenization(
self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs
) -> Tuple[str, Dict[str, Any]]:
"""
Performs any necessary transformations before tokenization.
This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
`kwargs` at the end of the encoding process to be sure all the arguments have been used.
Args:
text (`str`):
The text to prepare.
is_split_into_words (`bool`, *optional*, defaults to `False`):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize.
normalize (`bool`, *optional*, defaults to `None`):
Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is
trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input
text consists only of lower-case characters.
kwargs (`Dict[str, Any]`, *optional*):
Keyword arguments to use for the tokenization.
Returns:
`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
"""
normalize = normalize if normalize is not None else self.normalize
if normalize:
# normalise for casing
text = self.normalize_text(text)
filtered_text = self._preprocess_char(text)
if has_non_roman_characters(filtered_text) and self.is_uroman:
logger.warning(
"Text to the tokenizer contains non-Roman characters. Ensure the `uroman` Romanizer is "
"applied to the text prior to passing it to the tokenizer. See "
"`https://github.com/isi-nlp/uroman` for details."
)
if self.phonemize:
if not is_phonemizer_available():
raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.")
filtered_text = phonemizer.phonemize(
filtered_text,
language="en-us",
backend="espeak",
strip=True,
preserve_punctuation=True,
with_stress=True,
)
filtered_text = re.sub(r"\s+", " ", filtered_text)
elif normalize:
# strip any chars outside of the vocab (punctuation)
filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip()
return filtered_text, kwargs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
tokens = list(text)
if self.add_blank:
interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2 + 1)
interspersed[1::2] = tokens
tokens = interspersed
return tokens
def convert_tokens_to_string(self, tokens: List[str]) -> str:
if self.add_blank and len(tokens) > 1:
tokens = tokens[1::2]
return "".join(tokens)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)