2455 lines
104 KiB
Python
2455 lines
104 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" PyTorch Wav2Vec2 model."""
|
||
|
|
||
|
import math
|
||
|
import warnings
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
from torch import nn
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
from ...activations import ACT2FN
|
||
|
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
||
|
from ...modeling_outputs import (
|
||
|
BaseModelOutput,
|
||
|
CausalLMOutput,
|
||
|
MaskedLMOutput,
|
||
|
SequenceClassifierOutput,
|
||
|
TokenClassifierOutput,
|
||
|
Wav2Vec2BaseModelOutput,
|
||
|
XVectorOutput,
|
||
|
)
|
||
|
from ...modeling_utils import PreTrainedModel
|
||
|
from ...pytorch_utils import is_torch_greater_or_equal_than_1_13
|
||
|
from ...utils import (
|
||
|
ModelOutput,
|
||
|
add_code_sample_docstrings,
|
||
|
add_start_docstrings,
|
||
|
add_start_docstrings_to_model_forward,
|
||
|
cached_file,
|
||
|
is_peft_available,
|
||
|
is_safetensors_available,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
)
|
||
|
from .configuration_wav2vec2 import Wav2Vec2Config
|
||
|
|
||
|
|
||
|
WAV2VEC2_ADAPTER_PT_FILE = "adapter.{}.bin"
|
||
|
WAV2VEC2_ADAPTER_SAFE_FILE = "adapter.{}.safetensors"
|
||
|
|
||
|
if is_safetensors_available():
|
||
|
from safetensors.torch import load_file as safe_load_file
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
_HIDDEN_STATES_START_POSITION = 2
|
||
|
|
||
|
# General docstring
|
||
|
_CONFIG_FOR_DOC = "Wav2Vec2Config"
|
||
|
|
||
|
# Base docstring
|
||
|
_CHECKPOINT_FOR_DOC = "facebook/wav2vec2-base-960h"
|
||
|
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
||
|
|
||
|
# CTC docstring
|
||
|
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
||
|
_CTC_EXPECTED_LOSS = 53.48
|
||
|
|
||
|
# Audio class docstring
|
||
|
_SEQ_CLASS_CHECKPOINT = "superb/wav2vec2-base-superb-ks"
|
||
|
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
|
||
|
_SEQ_CLASS_EXPECTED_LOSS = 6.54
|
||
|
|
||
|
# Frame class docstring
|
||
|
_FRAME_CLASS_CHECKPOINT = "anton-l/wav2vec2-base-superb-sd"
|
||
|
_FRAME_EXPECTED_OUTPUT = [0, 0]
|
||
|
|
||
|
# Speaker Verification docstring
|
||
|
_XVECTOR_CHECKPOINT = "anton-l/wav2vec2-base-superb-sv"
|
||
|
_XVECTOR_EXPECTED_OUTPUT = 0.98
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Wav2Vec2ForPreTrainingOutput(ModelOutput):
|
||
|
"""
|
||
|
Output type of [`Wav2Vec2ForPreTraining`], with potential hidden states and attentions.
|
||
|
|
||
|
Args:
|
||
|
loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
|
||
|
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
|
||
|
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
|
||
|
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
|
||
|
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
|
||
|
projected quantized states.
|
||
|
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
|
||
|
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
|
||
|
target vectors for contrastive loss.
|
||
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
||
|
shape `(batch_size, sequence_length, hidden_size)`.
|
||
|
|
||
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
||
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
||
|
sequence_length)`.
|
||
|
|
||
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||
|
heads.
|
||
|
contrastive_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
|
||
|
The contrastive loss (L_m) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
|
||
|
diversity_loss (*optional*, returned when `sample_negative_indices` are passed, `torch.FloatTensor` of shape `(1,)`):
|
||
|
The diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) .
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
projected_states: torch.FloatTensor = None
|
||
|
projected_quantized_states: torch.FloatTensor = None
|
||
|
codevector_perplexity: torch.FloatTensor = None
|
||
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
||
|
contrastive_loss: Optional[torch.FloatTensor] = None
|
||
|
diversity_loss: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
def _compute_mask_indices(
|
||
|
shape: Tuple[int, int],
|
||
|
mask_prob: float,
|
||
|
mask_length: int,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
min_masks: int = 0,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
|
||
|
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
|
||
|
CPU as part of the preprocessing during training.
|
||
|
|
||
|
Args:
|
||
|
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
|
||
|
the first element is the batch size and the second element is the length of the axis to span.
|
||
|
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
|
||
|
independently generated mask spans of length `mask_length` is computed by
|
||
|
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
|
||
|
actual percentage will be smaller.
|
||
|
mask_length: size of the mask
|
||
|
min_masks: minimum number of masked spans
|
||
|
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
|
||
|
each batch dimension.
|
||
|
"""
|
||
|
batch_size, sequence_length = shape
|
||
|
|
||
|
if mask_length < 1:
|
||
|
raise ValueError("`mask_length` has to be bigger than 0.")
|
||
|
|
||
|
if mask_length > sequence_length:
|
||
|
raise ValueError(
|
||
|
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
|
||
|
f" and `sequence_length`: {sequence_length}`"
|
||
|
)
|
||
|
|
||
|
# epsilon is used for probabilistic rounding
|
||
|
epsilon = np.random.rand(1).item()
|
||
|
|
||
|
def compute_num_masked_span(input_length):
|
||
|
"""Given input length, compute how many spans should be masked"""
|
||
|
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
|
||
|
num_masked_span = max(num_masked_span, min_masks)
|
||
|
|
||
|
# make sure num masked span <= sequence_length
|
||
|
if num_masked_span * mask_length > sequence_length:
|
||
|
num_masked_span = sequence_length // mask_length
|
||
|
|
||
|
# make sure num_masked span is also <= input_length - (mask_length - 1)
|
||
|
if input_length - (mask_length - 1) < num_masked_span:
|
||
|
num_masked_span = max(input_length - (mask_length - 1), 0)
|
||
|
|
||
|
return num_masked_span
|
||
|
|
||
|
# compute number of masked spans in batch
|
||
|
input_lengths = (
|
||
|
attention_mask.sum(-1).detach().tolist()
|
||
|
if attention_mask is not None
|
||
|
else [sequence_length for _ in range(batch_size)]
|
||
|
)
|
||
|
|
||
|
# SpecAugment mask to fill
|
||
|
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
|
||
|
spec_aug_mask_idxs = []
|
||
|
|
||
|
max_num_masked_span = compute_num_masked_span(sequence_length)
|
||
|
|
||
|
if max_num_masked_span == 0:
|
||
|
return spec_aug_mask
|
||
|
|
||
|
for input_length in input_lengths:
|
||
|
# compute num of masked spans for this input
|
||
|
num_masked_span = compute_num_masked_span(input_length)
|
||
|
|
||
|
# get random indices to mask
|
||
|
spec_aug_mask_idx = np.random.choice(
|
||
|
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
|
||
|
)
|
||
|
|
||
|
# pick first sampled index that will serve as a dummy index to pad vector
|
||
|
# to ensure same dimension for all batches due to probabilistic rounding
|
||
|
# Picking first sample just pads those vectors twice.
|
||
|
if len(spec_aug_mask_idx) == 0:
|
||
|
# this case can only happen if `input_length` is strictly smaller then
|
||
|
# `sequence_length` in which case the last token has to be a padding
|
||
|
# token which we can use as a dummy mask id
|
||
|
dummy_mask_idx = sequence_length - 1
|
||
|
else:
|
||
|
dummy_mask_idx = spec_aug_mask_idx[0]
|
||
|
|
||
|
spec_aug_mask_idx = np.concatenate(
|
||
|
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
|
||
|
)
|
||
|
spec_aug_mask_idxs.append(spec_aug_mask_idx)
|
||
|
|
||
|
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
|
||
|
|
||
|
# expand masked indices to masked spans
|
||
|
spec_aug_mask_idxs = np.broadcast_to(
|
||
|
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
|
||
|
)
|
||
|
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
|
||
|
|
||
|
# add offset to the starting indexes so that indexes now create a span
|
||
|
offsets = np.arange(mask_length)[None, None, :]
|
||
|
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
|
||
|
batch_size, max_num_masked_span * mask_length
|
||
|
)
|
||
|
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
|
||
|
|
||
|
# ensure that we cannot have indices larger than sequence_length
|
||
|
if spec_aug_mask_idxs.max() > sequence_length - 1:
|
||
|
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
|
||
|
|
||
|
# scatter indices to mask
|
||
|
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
|
||
|
|
||
|
return spec_aug_mask
|
||
|
|
||
|
|
||
|
def _sample_negative_indices(
|
||
|
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
|
||
|
):
|
||
|
"""
|
||
|
Sample `num_negatives` vectors from feature vectors.
|
||
|
"""
|
||
|
batch_size, sequence_length = features_shape
|
||
|
|
||
|
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
|
||
|
sequence_length_range = np.arange(sequence_length)
|
||
|
|
||
|
# get `num_negatives` random vector indices from the same utterance
|
||
|
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
|
||
|
|
||
|
mask_time_indices = (
|
||
|
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
|
||
|
)
|
||
|
|
||
|
for batch_idx in range(batch_size):
|
||
|
high = mask_time_indices[batch_idx].sum() - 1
|
||
|
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
|
||
|
|
||
|
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
|
||
|
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
|
||
|
# avoid sampling the same positive vector, but keep the distribution uniform
|
||
|
sampled_indices[sampled_indices >= feature_indices] += 1
|
||
|
|
||
|
# remap to actual indices
|
||
|
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
|
||
|
|
||
|
# correct for batch size
|
||
|
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
|
||
|
|
||
|
return sampled_negative_indices
|
||
|
|
||
|
|
||
|
class Wav2Vec2NoLayerNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2LayerNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(-2, -1)
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = hidden_states.transpose(-2, -1)
|
||
|
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2GroupNormConvLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
|
||
|
self.out_conv_dim = config.conv_dim[layer_id]
|
||
|
|
||
|
self.conv = nn.Conv1d(
|
||
|
self.in_conv_dim,
|
||
|
self.out_conv_dim,
|
||
|
kernel_size=config.conv_kernel[layer_id],
|
||
|
stride=config.conv_stride[layer_id],
|
||
|
bias=config.conv_bias,
|
||
|
)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2PositionalConvEmbedding(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv1d(
|
||
|
config.hidden_size,
|
||
|
config.hidden_size,
|
||
|
kernel_size=config.num_conv_pos_embeddings,
|
||
|
padding=config.num_conv_pos_embeddings // 2,
|
||
|
groups=config.num_conv_pos_embedding_groups,
|
||
|
)
|
||
|
|
||
|
weight_norm = nn.utils.weight_norm
|
||
|
if hasattr(nn.utils.parametrizations, "weight_norm"):
|
||
|
weight_norm = nn.utils.parametrizations.weight_norm
|
||
|
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
|
||
|
self.conv = weight_norm(self.conv, name="weight", dim=2)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_v)
|
||
|
deepspeed.zero.register_external_parameter(self, self.conv.weight_g)
|
||
|
else:
|
||
|
self.conv = weight_norm(self.conv, name="weight", dim=2)
|
||
|
|
||
|
self.padding = Wav2Vec2SamePadLayer(config.num_conv_pos_embeddings)
|
||
|
self.activation = ACT2FN[config.feat_extract_activation]
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = self.padding(hidden_states)
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2SamePadLayer(nn.Module):
|
||
|
def __init__(self, num_conv_pos_embeddings):
|
||
|
super().__init__()
|
||
|
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
if self.num_pad_remove > 0:
|
||
|
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2FeatureEncoder(nn.Module):
|
||
|
"""Construct the features from raw audio waveform"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
if config.feat_extract_norm == "group":
|
||
|
conv_layers = [Wav2Vec2GroupNormConvLayer(config, layer_id=0)] + [
|
||
|
Wav2Vec2NoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1)
|
||
|
]
|
||
|
elif config.feat_extract_norm == "layer":
|
||
|
conv_layers = [
|
||
|
Wav2Vec2LayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
|
||
|
]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
|
||
|
)
|
||
|
self.conv_layers = nn.ModuleList(conv_layers)
|
||
|
self.gradient_checkpointing = False
|
||
|
self._requires_grad = True
|
||
|
|
||
|
def _freeze_parameters(self):
|
||
|
for param in self.parameters():
|
||
|
param.requires_grad = False
|
||
|
self._requires_grad = False
|
||
|
|
||
|
def forward(self, input_values):
|
||
|
hidden_states = input_values[:, None]
|
||
|
|
||
|
# make sure hidden_states require grad for gradient_checkpointing
|
||
|
if self._requires_grad and self.training:
|
||
|
hidden_states.requires_grad = True
|
||
|
|
||
|
for conv_layer in self.conv_layers:
|
||
|
if self._requires_grad and self.gradient_checkpointing and self.training:
|
||
|
hidden_states = self._gradient_checkpointing_func(
|
||
|
conv_layer.__call__,
|
||
|
hidden_states,
|
||
|
)
|
||
|
else:
|
||
|
hidden_states = conv_layer(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2FeatureExtractor(Wav2Vec2FeatureEncoder):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
warnings.warn(
|
||
|
f"The class `{self.__class__.__name__}` has been depreciated "
|
||
|
"and will be removed in Transformers v5. "
|
||
|
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
|
||
|
|
||
|
class Wav2Vec2FeatureProjection(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
|
||
|
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
|
||
|
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# non-projected hidden states are needed for quantization
|
||
|
norm_hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.projection(norm_hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
return hidden_states, norm_hidden_states
|
||
|
|
||
|
|
||
|
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Wav2Vec2
|
||
|
class Wav2Vec2Attention(nn.Module):
|
||
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
embed_dim: int,
|
||
|
num_heads: int,
|
||
|
dropout: float = 0.0,
|
||
|
is_decoder: bool = False,
|
||
|
bias: bool = True,
|
||
|
is_causal: bool = False,
|
||
|
config: Optional[Wav2Vec2Config] = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.embed_dim = embed_dim
|
||
|
self.num_heads = num_heads
|
||
|
self.dropout = dropout
|
||
|
self.head_dim = embed_dim // num_heads
|
||
|
self.config = config
|
||
|
|
||
|
if (self.head_dim * num_heads) != self.embed_dim:
|
||
|
raise ValueError(
|
||
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
||
|
f" and `num_heads`: {num_heads})."
|
||
|
)
|
||
|
self.scaling = self.head_dim**-0.5
|
||
|
self.is_decoder = is_decoder
|
||
|
self.is_causal = is_causal
|
||
|
|
||
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
||
|
|
||
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
key_value_states: Optional[torch.Tensor] = None,
|
||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
layer_head_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||
|
"""Input shape: Batch x Time x Channel"""
|
||
|
|
||
|
# if key_value_states are provided this layer is used as a cross-attention layer
|
||
|
# for the decoder
|
||
|
is_cross_attention = key_value_states is not None
|
||
|
|
||
|
bsz, tgt_len, _ = hidden_states.size()
|
||
|
|
||
|
# get query proj
|
||
|
query_states = self.q_proj(hidden_states) * self.scaling
|
||
|
# get key, value proj
|
||
|
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
||
|
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
||
|
# the provided `key_value_states` to support prefix tuning
|
||
|
if (
|
||
|
is_cross_attention
|
||
|
and past_key_value is not None
|
||
|
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
||
|
):
|
||
|
# reuse k,v, cross_attentions
|
||
|
key_states = past_key_value[0]
|
||
|
value_states = past_key_value[1]
|
||
|
elif is_cross_attention:
|
||
|
# cross_attentions
|
||
|
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
||
|
elif past_key_value is not None:
|
||
|
# reuse k, v, self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
||
|
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
||
|
else:
|
||
|
# self_attention
|
||
|
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
||
|
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
||
|
|
||
|
if self.is_decoder:
|
||
|
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
||
|
# Further calls to cross_attention layer can then reuse all cross-attention
|
||
|
# key/value_states (first "if" case)
|
||
|
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
||
|
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
||
|
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
||
|
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
||
|
past_key_value = (key_states, value_states)
|
||
|
|
||
|
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
||
|
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
||
|
key_states = key_states.reshape(*proj_shape)
|
||
|
value_states = value_states.reshape(*proj_shape)
|
||
|
|
||
|
src_len = key_states.size(1)
|
||
|
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
||
|
|
||
|
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
||
|
f" {attn_weights.size()}"
|
||
|
)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
||
|
raise ValueError(
|
||
|
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
||
|
)
|
||
|
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||
|
|
||
|
if layer_head_mask is not None:
|
||
|
if layer_head_mask.size() != (self.num_heads,):
|
||
|
raise ValueError(
|
||
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
||
|
f" {layer_head_mask.size()}"
|
||
|
)
|
||
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
|
||
|
if output_attentions:
|
||
|
# this operation is a bit awkward, but it's required to
|
||
|
# make sure that attn_weights keeps its gradient.
|
||
|
# In order to do so, attn_weights have to be reshaped
|
||
|
# twice and have to be reused in the following
|
||
|
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
||
|
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
||
|
else:
|
||
|
attn_weights_reshaped = None
|
||
|
|
||
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
||
|
|
||
|
attn_output = torch.bmm(attn_probs, value_states)
|
||
|
|
||
|
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
||
|
raise ValueError(
|
||
|
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
||
|
f" {attn_output.size()}"
|
||
|
)
|
||
|
|
||
|
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
||
|
attn_output = attn_output.transpose(1, 2)
|
||
|
|
||
|
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
||
|
# partitioned across GPUs when using tensor-parallelism.
|
||
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
||
|
|
||
|
attn_output = self.out_proj(attn_output)
|
||
|
|
||
|
return attn_output, attn_weights_reshaped, past_key_value
|
||
|
|
||
|
|
||
|
class Wav2Vec2FeedForward(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
||
|
|
||
|
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.intermediate_dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
hidden_states = self.intermediate_dropout(hidden_states)
|
||
|
|
||
|
hidden_states = self.output_dense(hidden_states)
|
||
|
hidden_states = self.output_dropout(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2EncoderLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.attention = Wav2Vec2Attention(
|
||
|
embed_dim=config.hidden_size,
|
||
|
num_heads=config.num_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
is_decoder=False,
|
||
|
)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.feed_forward = Wav2Vec2FeedForward(config)
|
||
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
||
|
attn_residual = hidden_states
|
||
|
hidden_states, attn_weights, _ = self.attention(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = attn_residual + hidden_states
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = hidden_states + self.feed_forward(hidden_states)
|
||
|
hidden_states = self.final_layer_norm(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class Wav2Vec2EncoderLayerStableLayerNorm(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.attention = Wav2Vec2Attention(
|
||
|
embed_dim=config.hidden_size,
|
||
|
num_heads=config.num_attention_heads,
|
||
|
dropout=config.attention_dropout,
|
||
|
is_decoder=False,
|
||
|
)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.feed_forward = Wav2Vec2FeedForward(config)
|
||
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
|
||
|
if getattr(config, "adapter_attn_dim", None) is not None:
|
||
|
self.adapter_layer = Wav2Vec2AttnAdapterLayer(config)
|
||
|
else:
|
||
|
self.adapter_layer = None
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.Tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
):
|
||
|
attn_residual = hidden_states
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states, attn_weights, _ = self.attention(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = attn_residual + hidden_states
|
||
|
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
||
|
|
||
|
if self.adapter_layer is not None:
|
||
|
hidden_states = hidden_states + self.adapter_layer(hidden_states)
|
||
|
|
||
|
outputs = (hidden_states,)
|
||
|
|
||
|
if output_attentions:
|
||
|
outputs += (attn_weights,)
|
||
|
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
class Wav2Vec2Encoder(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layers = nn.ModuleList([Wav2Vec2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.tensor,
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: bool = False,
|
||
|
output_hidden_states: bool = False,
|
||
|
return_dict: bool = True,
|
||
|
):
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# make sure padded tokens output 0
|
||
|
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
||
|
hidden_states[~expand_attention_mask] = 0
|
||
|
|
||
|
# extend attention_mask
|
||
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
||
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
||
|
attention_mask = attention_mask.expand(
|
||
|
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
||
|
)
|
||
|
|
||
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
||
|
hidden_states = hidden_states + position_embeddings
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
||
|
|
||
|
for layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
dropout_probability = torch.rand([])
|
||
|
|
||
|
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
||
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||
|
# under deepspeed zero3 all gpus must run in sync
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if skip_the_layer:
|
||
|
layer_outputs = (None, None)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class Wav2Vec2EncoderStableLayerNorm(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.config = config
|
||
|
self.pos_conv_embed = Wav2Vec2PositionalConvEmbedding(config)
|
||
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
||
|
self.layers = nn.ModuleList(
|
||
|
[Wav2Vec2EncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
|
||
|
)
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states,
|
||
|
attention_mask=None,
|
||
|
output_attentions=False,
|
||
|
output_hidden_states=False,
|
||
|
return_dict=True,
|
||
|
):
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attentions = () if output_attentions else None
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# make sure padded tokens are not attended to
|
||
|
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
||
|
hidden_states[~expand_attention_mask] = 0
|
||
|
|
||
|
# extend attention_mask
|
||
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
||
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
||
|
attention_mask = attention_mask.expand(
|
||
|
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
||
|
)
|
||
|
|
||
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
||
|
hidden_states = hidden_states + position_embeddings
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
||
|
|
||
|
for layer in self.layers:
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
||
|
dropout_probability = torch.rand([])
|
||
|
|
||
|
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
|
||
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
||
|
# under deepspeed zero3 all gpus must run in sync
|
||
|
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
layer_outputs = self._gradient_checkpointing_func(
|
||
|
layer.__call__,
|
||
|
hidden_states,
|
||
|
attention_mask,
|
||
|
output_attentions,
|
||
|
)
|
||
|
else:
|
||
|
layer_outputs = layer(
|
||
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
||
|
)
|
||
|
hidden_states = layer_outputs[0]
|
||
|
|
||
|
if skip_the_layer:
|
||
|
layer_outputs = (None, None)
|
||
|
|
||
|
if output_attentions:
|
||
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
||
|
|
||
|
hidden_states = self.layer_norm(hidden_states)
|
||
|
|
||
|
if output_hidden_states:
|
||
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
|
||
|
if not return_dict:
|
||
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
return BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
hidden_states=all_hidden_states,
|
||
|
attentions=all_self_attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class Wav2Vec2GumbelVectorQuantizer(nn.Module):
|
||
|
"""
|
||
|
Vector quantization using gumbel softmax. See `[CATEGORICAL REPARAMETERIZATION WITH
|
||
|
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.num_groups = config.num_codevector_groups
|
||
|
self.num_vars = config.num_codevectors_per_group
|
||
|
|
||
|
if config.codevector_dim % self.num_groups != 0:
|
||
|
raise ValueError(
|
||
|
f"`config.codevector_dim {config.codevector_dim} must be divisible "
|
||
|
f"by `config.num_codevector_groups` {self.num_groups} for concatenation"
|
||
|
)
|
||
|
|
||
|
# storage for codebook variables (codewords)
|
||
|
self.codevectors = nn.Parameter(
|
||
|
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
|
||
|
)
|
||
|
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
|
||
|
|
||
|
# can be decayed for training
|
||
|
self.temperature = 2
|
||
|
|
||
|
@staticmethod
|
||
|
def _compute_perplexity(probs, mask=None):
|
||
|
if mask is not None:
|
||
|
mask_extended = mask.flatten()[:, None, None].expand(probs.shape)
|
||
|
probs = torch.where(mask_extended, probs, torch.zeros_like(probs))
|
||
|
marginal_probs = probs.sum(dim=0) / mask.sum()
|
||
|
else:
|
||
|
marginal_probs = probs.mean(dim=0)
|
||
|
|
||
|
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
|
||
|
return perplexity
|
||
|
|
||
|
def forward(self, hidden_states, mask_time_indices=None):
|
||
|
batch_size, sequence_length, hidden_size = hidden_states.shape
|
||
|
|
||
|
# project to codevector dim
|
||
|
hidden_states = self.weight_proj(hidden_states)
|
||
|
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
|
||
|
|
||
|
if self.training:
|
||
|
# sample code vector probs via gumbel in differentiateable way
|
||
|
codevector_probs = nn.functional.gumbel_softmax(
|
||
|
hidden_states.float(), tau=self.temperature, hard=True
|
||
|
).type_as(hidden_states)
|
||
|
|
||
|
# compute perplexity
|
||
|
codevector_soft_dist = torch.softmax(
|
||
|
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
|
||
|
)
|
||
|
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
|
||
|
else:
|
||
|
# take argmax in non-differentiable way
|
||
|
# comptute hard codevector distribution (one hot)
|
||
|
codevector_idx = hidden_states.argmax(dim=-1)
|
||
|
codevector_probs = hidden_states.new_zeros(hidden_states.shape).scatter_(
|
||
|
-1, codevector_idx.view(-1, 1), 1.0
|
||
|
)
|
||
|
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
|
||
|
|
||
|
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
|
||
|
|
||
|
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
|
||
|
# use probs to retrieve codevectors
|
||
|
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
|
||
|
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
|
||
|
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
|
||
|
|
||
|
return codevectors, perplexity
|
||
|
|
||
|
|
||
|
class Wav2Vec2Adapter(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
|
||
|
# feature dim might need to be down-projected
|
||
|
if config.output_hidden_size != config.hidden_size:
|
||
|
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
|
||
|
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size)
|
||
|
else:
|
||
|
self.proj = self.proj_layer_norm = None
|
||
|
|
||
|
self.layers = nn.ModuleList(Wav2Vec2AdapterLayer(config) for _ in range(config.num_adapter_layers))
|
||
|
self.layerdrop = config.layerdrop
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# down project hidden_states if necessary
|
||
|
if self.proj is not None and self.proj_layer_norm is not None:
|
||
|
hidden_states = self.proj(hidden_states)
|
||
|
hidden_states = self.proj_layer_norm(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
|
||
|
for layer in self.layers:
|
||
|
layerdrop_prob = np.random.random()
|
||
|
if not self.training or (layerdrop_prob > self.layerdrop):
|
||
|
hidden_states = layer(hidden_states)
|
||
|
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2AdapterLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.conv = nn.Conv1d(
|
||
|
config.output_hidden_size,
|
||
|
2 * config.output_hidden_size,
|
||
|
config.adapter_kernel_size,
|
||
|
stride=config.adapter_stride,
|
||
|
padding=1,
|
||
|
)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.conv(hidden_states)
|
||
|
hidden_states = nn.functional.glu(hidden_states, dim=1)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2AttnAdapterLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
"""
|
||
|
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
|
||
|
up training throughput.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.input_dim = config.adapter_attn_dim
|
||
|
self.hidden_dim = config.hidden_size
|
||
|
|
||
|
self.norm = nn.LayerNorm(self.hidden_dim)
|
||
|
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
|
||
|
self.act_fn = nn.ReLU()
|
||
|
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
|
||
|
|
||
|
def forward(self, hidden_states: torch.FloatTensor):
|
||
|
hidden_states = self.norm(hidden_states)
|
||
|
|
||
|
hidden_states = self.linear_1(hidden_states)
|
||
|
hidden_states = self.act_fn(hidden_states)
|
||
|
hidden_states = self.linear_2(hidden_states)
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class Wav2Vec2PreTrainedModel(PreTrainedModel):
|
||
|
"""
|
||
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||
|
models.
|
||
|
"""
|
||
|
|
||
|
config_class = Wav2Vec2Config
|
||
|
base_model_prefix = "wav2vec2"
|
||
|
main_input_name = "input_values"
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""Initialize the weights"""
|
||
|
# Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
|
||
|
if isinstance(module, Wav2Vec2ForPreTraining):
|
||
|
module.project_hid.reset_parameters()
|
||
|
module.project_q.reset_parameters()
|
||
|
module.project_hid._is_hf_initialized = True
|
||
|
module.project_q._is_hf_initialized = True
|
||
|
# gumbel softmax requires special init
|
||
|
elif isinstance(module, Wav2Vec2GumbelVectorQuantizer):
|
||
|
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
|
||
|
module.weight_proj.bias.data.zero_()
|
||
|
nn.init.uniform_(module.codevectors)
|
||
|
elif isinstance(module, Wav2Vec2PositionalConvEmbedding):
|
||
|
nn.init.normal_(
|
||
|
module.conv.weight,
|
||
|
mean=0,
|
||
|
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
||
|
)
|
||
|
nn.init.constant_(module.conv.bias, 0)
|
||
|
elif isinstance(module, Wav2Vec2FeatureProjection):
|
||
|
k = math.sqrt(1 / module.projection.in_features)
|
||
|
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
||
|
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
||
|
elif isinstance(module, nn.Linear):
|
||
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||
|
|
||
|
if module.bias is not None:
|
||
|
module.bias.data.zero_()
|
||
|
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
||
|
module.bias.data.zero_()
|
||
|
module.weight.data.fill_(1.0)
|
||
|
elif isinstance(module, nn.Conv1d):
|
||
|
nn.init.kaiming_normal_(module.weight)
|
||
|
|
||
|
if module.bias is not None:
|
||
|
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
||
|
nn.init.uniform_(module.bias, a=-k, b=k)
|
||
|
|
||
|
def _get_feat_extract_output_lengths(
|
||
|
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
||
|
):
|
||
|
"""
|
||
|
Computes the output length of the convolutional layers
|
||
|
"""
|
||
|
|
||
|
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
|
||
|
|
||
|
def _conv_out_length(input_length, kernel_size, stride):
|
||
|
# 1D convolutional layer output length formula taken
|
||
|
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
||
|
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
|
||
|
|
||
|
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
|
||
|
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
||
|
|
||
|
if add_adapter:
|
||
|
for _ in range(self.config.num_adapter_layers):
|
||
|
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
|
||
|
|
||
|
return input_lengths
|
||
|
|
||
|
def _get_feature_vector_attention_mask(
|
||
|
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
|
||
|
):
|
||
|
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
||
|
# on inference mode.
|
||
|
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
|
||
|
|
||
|
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
|
||
|
output_lengths = output_lengths.to(torch.long)
|
||
|
|
||
|
batch_size = attention_mask.shape[0]
|
||
|
|
||
|
attention_mask = torch.zeros(
|
||
|
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
||
|
)
|
||
|
# these two operations makes sure that all values before the output lengths idxs are attended to
|
||
|
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
|
||
|
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
||
|
return attention_mask
|
||
|
|
||
|
def _get_adapters(self):
|
||
|
if self.config.adapter_attn_dim is None:
|
||
|
raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.")
|
||
|
|
||
|
adapter_weights = {}
|
||
|
for name, module in self.named_modules():
|
||
|
if isinstance(module, Wav2Vec2AttnAdapterLayer):
|
||
|
for param_name, param in module.named_parameters():
|
||
|
adapter_weights[".".join([name, param_name])] = param
|
||
|
|
||
|
if isinstance(self, Wav2Vec2ForCTC):
|
||
|
for name, param in self.lm_head.named_parameters():
|
||
|
adapter_weights[".".join(["lm_head", name])] = param
|
||
|
|
||
|
return adapter_weights
|
||
|
|
||
|
def init_adapter_layers(self):
|
||
|
"""
|
||
|
(Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning
|
||
|
"""
|
||
|
# init attention adapters
|
||
|
for module in self.modules():
|
||
|
if isinstance(module, Wav2Vec2AttnAdapterLayer):
|
||
|
self._init_weights(module)
|
||
|
|
||
|
# init lm head
|
||
|
if isinstance(self, Wav2Vec2ForCTC):
|
||
|
self._init_weights(self.lm_head)
|
||
|
|
||
|
def load_adapter(self, target_lang: str, force_load=True, **kwargs):
|
||
|
r"""
|
||
|
Load a language adapter model from a pre-trained adapter model.
|
||
|
|
||
|
Parameters:
|
||
|
target_lang (`str`):
|
||
|
Has to be a language id of an existing adapter weight. Adapter weights are stored in the format
|
||
|
adapter.<lang>.safetensors or adapter.<lang>.bin
|
||
|
force_load (`bool`, defaults to `True`):
|
||
|
Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`.
|
||
|
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||
|
standard cache should not be used.
|
||
|
force_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||
|
cached versions if they exist.
|
||
|
resume_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
||
|
file exists.
|
||
|
proxies (`Dict[str, str]`, *optional*):
|
||
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||
|
local_files_only(`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to only look at local files (i.e., do not try to download the model).
|
||
|
token (`str` or `bool`, *optional*):
|
||
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||
|
revision (`str`, *optional*, defaults to `"main"`):
|
||
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||
|
identifier allowed by git.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
mirror (`str`, *optional*):
|
||
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
||
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
||
|
Please refer to the mirror site for more information.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
|
||
|
use this method in a firewalled environment.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import Wav2Vec2ForCTC, AutoProcessor
|
||
|
|
||
|
>>> ckpt = "facebook/mms-1b-all"
|
||
|
>>> processor = AutoProcessor.from_pretrained(ckpt)
|
||
|
>>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng")
|
||
|
>>> # set specific language
|
||
|
>>> processor.tokenizer.set_target_lang("spa")
|
||
|
>>> model.load_adapter("spa")
|
||
|
```
|
||
|
"""
|
||
|
if self.config.adapter_attn_dim is None:
|
||
|
raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.")
|
||
|
|
||
|
if target_lang == self.target_lang and not force_load:
|
||
|
logger.warning(f"Adapter weights are already set to {target_lang}.")
|
||
|
return
|
||
|
|
||
|
cache_dir = kwargs.pop("cache_dir", None)
|
||
|
force_download = kwargs.pop("force_download", False)
|
||
|
resume_download = kwargs.pop("resume_download", False)
|
||
|
proxies = kwargs.pop("proxies", None)
|
||
|
local_files_only = kwargs.pop("local_files_only", False)
|
||
|
token = kwargs.pop("token", None)
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
revision = kwargs.pop("revision", None)
|
||
|
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
model_path_or_id = self.config._name_or_path
|
||
|
state_dict = None
|
||
|
|
||
|
# 1. Let's first try loading a safetensors adapter weight
|
||
|
if use_safetensors is not False:
|
||
|
filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang)
|
||
|
|
||
|
try:
|
||
|
weight_path = cached_file(
|
||
|
model_path_or_id,
|
||
|
filename=filepath,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
cache_dir=cache_dir,
|
||
|
)
|
||
|
|
||
|
state_dict = safe_load_file(weight_path)
|
||
|
|
||
|
except EnvironmentError:
|
||
|
if use_safetensors:
|
||
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
||
|
# to the original exception.
|
||
|
raise
|
||
|
|
||
|
except Exception:
|
||
|
# For any other exception, we throw a generic error.
|
||
|
if use_safetensors:
|
||
|
raise EnvironmentError(
|
||
|
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
|
||
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
||
|
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
|
||
|
f" directory containing a file named {filepath}."
|
||
|
)
|
||
|
|
||
|
# 2. If this didn't work let's try loading a PyTorch adapter weight
|
||
|
if state_dict is None:
|
||
|
filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang)
|
||
|
|
||
|
try:
|
||
|
weight_path = cached_file(
|
||
|
model_path_or_id,
|
||
|
filename=filepath,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
cache_dir=cache_dir,
|
||
|
)
|
||
|
|
||
|
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
||
|
state_dict = torch.load(
|
||
|
weight_path,
|
||
|
map_location="cpu",
|
||
|
**weights_only_kwarg,
|
||
|
)
|
||
|
|
||
|
except EnvironmentError:
|
||
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
||
|
# to the original exception.
|
||
|
raise
|
||
|
|
||
|
except Exception:
|
||
|
# For any other exception, we throw a generic error.
|
||
|
raise EnvironmentError(
|
||
|
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
|
||
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
||
|
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
|
||
|
f" directory containing a file named {filepath}."
|
||
|
)
|
||
|
|
||
|
adapter_weights = self._get_adapters()
|
||
|
unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys())
|
||
|
missing_keys = set(adapter_weights.keys()) - set(state_dict.keys())
|
||
|
|
||
|
if len(unexpected_keys) > 0:
|
||
|
raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.")
|
||
|
elif len(missing_keys) > 0:
|
||
|
raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.")
|
||
|
|
||
|
# make sure now vocab size is correct
|
||
|
target_vocab_size = state_dict["lm_head.weight"].shape[0]
|
||
|
if target_vocab_size != self.config.vocab_size:
|
||
|
self.lm_head = nn.Linear(
|
||
|
self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype
|
||
|
)
|
||
|
self.config.vocab_size = target_vocab_size
|
||
|
|
||
|
# make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights
|
||
|
state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()}
|
||
|
self.load_state_dict(state_dict, strict=False)
|
||
|
|
||
|
# set target language corectly
|
||
|
self.target_lang = target_lang
|
||
|
|
||
|
|
||
|
WAV_2_VEC_2_START_DOCSTRING = r"""
|
||
|
Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
|
||
|
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
|
||
|
Auli.
|
||
|
|
||
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all its model (such as downloading or saving etc.).
|
||
|
|
||
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
||
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
||
|
behavior.
|
||
|
|
||
|
Parameters:
|
||
|
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
|
||
|
Initializing with a config file does not load the weights associated with the model, only the
|
||
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
|
"""
|
||
|
|
||
|
|
||
|
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
||
|
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
|
||
|
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
|
||
|
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
|
||
|
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
|
||
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
||
|
1]`:
|
||
|
|
||
|
- 1 for tokens that are **not masked**,
|
||
|
- 0 for tokens that are **masked**.
|
||
|
|
||
|
[What are attention masks?](../glossary#attention-mask)
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
|
||
|
True`. For all models whose processor has `config.return_attention_mask == False`, such as
|
||
|
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
|
||
|
passed to avoid degraded performance when doing batched inference. For such models `input_values` should
|
||
|
simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
|
||
|
different results depending on whether `input_values` is padded or not.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
output_attentions (`bool`, *optional*):
|
||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
|
tensors for more detail.
|
||
|
output_hidden_states (`bool`, *optional*):
|
||
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
|
more detail.
|
||
|
return_dict (`bool`, *optional*):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
"""
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.",
|
||
|
WAV_2_VEC_2_START_DOCSTRING,
|
||
|
)
|
||
|
class Wav2Vec2Model(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config: Wav2Vec2Config):
|
||
|
super().__init__(config)
|
||
|
self.config = config
|
||
|
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
|
||
|
self.feature_projection = Wav2Vec2FeatureProjection(config)
|
||
|
|
||
|
# model only needs masking vector if mask prob is > 0.0
|
||
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
||
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
||
|
|
||
|
if config.do_stable_layer_norm:
|
||
|
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
|
||
|
else:
|
||
|
self.encoder = Wav2Vec2Encoder(config)
|
||
|
|
||
|
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.feature_extractor._freeze_parameters()
|
||
|
|
||
|
def _mask_hidden_states(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
):
|
||
|
"""
|
||
|
Masks extracted features along time axis and/or along feature axis according to
|
||
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
||
|
"""
|
||
|
|
||
|
# `config.apply_spec_augment` can set masking to False
|
||
|
if not getattr(self.config, "apply_spec_augment", True):
|
||
|
return hidden_states
|
||
|
|
||
|
# generate indices & apply SpecAugment along time axis
|
||
|
batch_size, sequence_length, hidden_size = hidden_states.size()
|
||
|
|
||
|
if mask_time_indices is not None:
|
||
|
# apply SpecAugment along time axis with given mask_time_indices
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
elif self.config.mask_time_prob > 0 and self.training:
|
||
|
mask_time_indices = _compute_mask_indices(
|
||
|
(batch_size, sequence_length),
|
||
|
mask_prob=self.config.mask_time_prob,
|
||
|
mask_length=self.config.mask_time_length,
|
||
|
attention_mask=attention_mask,
|
||
|
min_masks=self.config.mask_time_min_masks,
|
||
|
)
|
||
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
||
|
|
||
|
if self.config.mask_feature_prob > 0 and self.training:
|
||
|
# generate indices & apply SpecAugment along feature axis
|
||
|
mask_feature_indices = _compute_mask_indices(
|
||
|
(batch_size, hidden_size),
|
||
|
mask_prob=self.config.mask_feature_prob,
|
||
|
mask_length=self.config.mask_feature_length,
|
||
|
min_masks=self.config.mask_feature_min_masks,
|
||
|
)
|
||
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
||
|
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
||
|
hidden_states[mask_feature_indices] = 0
|
||
|
|
||
|
return hidden_states
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=Wav2Vec2BaseModelOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="audio",
|
||
|
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
||
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
|
output_hidden_states = (
|
||
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
|
)
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
extract_features = self.feature_extractor(input_values)
|
||
|
extract_features = extract_features.transpose(1, 2)
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# compute reduced attention_mask corresponding to feature vectors
|
||
|
attention_mask = self._get_feature_vector_attention_mask(
|
||
|
extract_features.shape[1], attention_mask, add_adapter=False
|
||
|
)
|
||
|
|
||
|
hidden_states, extract_features = self.feature_projection(extract_features)
|
||
|
hidden_states = self._mask_hidden_states(
|
||
|
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
||
|
)
|
||
|
|
||
|
encoder_outputs = self.encoder(
|
||
|
hidden_states,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = encoder_outputs[0]
|
||
|
|
||
|
if self.adapter is not None:
|
||
|
hidden_states = self.adapter(hidden_states)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (hidden_states, extract_features) + encoder_outputs[1:]
|
||
|
|
||
|
return Wav2Vec2BaseModelOutput(
|
||
|
last_hidden_state=hidden_states,
|
||
|
extract_features=extract_features,
|
||
|
hidden_states=encoder_outputs.hidden_states,
|
||
|
attentions=encoder_outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
|
||
|
class Wav2Vec2ForPreTraining(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config: Wav2Vec2Config):
|
||
|
super().__init__(config)
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
|
||
|
|
||
|
self.quantizer = Wav2Vec2GumbelVectorQuantizer(config)
|
||
|
|
||
|
self.project_hid = nn.Linear(config.hidden_size, config.proj_codevector_dim)
|
||
|
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def set_gumbel_temperature(self, temperature: int):
|
||
|
"""
|
||
|
Set the Gumbel softmax temperature to a given value. Only necessary for training
|
||
|
"""
|
||
|
self.quantizer.temperature = temperature
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
||
|
|
||
|
@staticmethod
|
||
|
def compute_contrastive_logits(
|
||
|
target_features: torch.FloatTensor,
|
||
|
negative_features: torch.FloatTensor,
|
||
|
predicted_features: torch.FloatTensor,
|
||
|
temperature: int = 0.1,
|
||
|
):
|
||
|
"""
|
||
|
Compute logits for contrastive loss based using cosine similarity as the distance measure between
|
||
|
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
|
||
|
"""
|
||
|
target_features = torch.cat([target_features, negative_features], dim=0)
|
||
|
|
||
|
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1).type_as(
|
||
|
target_features
|
||
|
)
|
||
|
|
||
|
# apply temperature
|
||
|
logits = logits / temperature
|
||
|
return logits
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@replace_return_docstrings(output_type=Wav2Vec2ForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
mask_time_indices: Optional[torch.BoolTensor] = None,
|
||
|
sampled_negative_indices: Optional[torch.BoolTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, Wav2Vec2ForPreTrainingOutput]:
|
||
|
r"""
|
||
|
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||
|
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
|
||
|
masked extracted features in *config.proj_codevector_dim* space.
|
||
|
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
|
||
|
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
|
||
|
Required input for pre-training.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> import torch
|
||
|
>>> from transformers import AutoFeatureExtractor, Wav2Vec2ForPreTraining
|
||
|
>>> from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices
|
||
|
>>> from datasets import load_dataset
|
||
|
|
||
|
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
|
||
|
>>> model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
|
||
|
|
||
|
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
|
>>> input_values = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt").input_values # Batch size 1
|
||
|
|
||
|
>>> # compute masked indices
|
||
|
>>> batch_size, raw_sequence_length = input_values.shape
|
||
|
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length).item()
|
||
|
>>> mask_time_indices = _compute_mask_indices(
|
||
|
... shape=(batch_size, sequence_length), mask_prob=0.2, mask_length=2
|
||
|
... )
|
||
|
>>> sampled_negative_indices = _sample_negative_indices(
|
||
|
... features_shape=(batch_size, sequence_length),
|
||
|
... num_negatives=model.config.num_negatives,
|
||
|
... mask_time_indices=mask_time_indices,
|
||
|
... )
|
||
|
>>> mask_time_indices = torch.tensor(data=mask_time_indices, device=input_values.device, dtype=torch.long)
|
||
|
>>> sampled_negative_indices = torch.tensor(
|
||
|
... data=sampled_negative_indices, device=input_values.device, dtype=torch.long
|
||
|
... )
|
||
|
|
||
|
>>> with torch.no_grad():
|
||
|
... outputs = model(input_values, mask_time_indices=mask_time_indices)
|
||
|
|
||
|
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
|
||
|
>>> cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
|
||
|
|
||
|
>>> # show that cosine similarity is much higher than random
|
||
|
>>> cosine_sim[mask_time_indices.to(torch.bool)].mean() > 0.5
|
||
|
tensor(True)
|
||
|
|
||
|
>>> # for contrastive loss training model should be put into train mode
|
||
|
>>> model = model.train()
|
||
|
>>> loss = model(
|
||
|
... input_values, mask_time_indices=mask_time_indices, sampled_negative_indices=sampled_negative_indices
|
||
|
... ).loss
|
||
|
```"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
if mask_time_indices is not None:
|
||
|
mask_time_indices = mask_time_indices.to(torch.bool)
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
mask_time_indices=mask_time_indices,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
# 1. project all transformed features (including masked) to final vq dim
|
||
|
transformer_features = self.project_hid(outputs[0])
|
||
|
|
||
|
# 2. quantize all (unmasked) extracted features and project to final vq dim
|
||
|
extract_features = self.dropout_features(outputs[1])
|
||
|
|
||
|
if attention_mask is not None:
|
||
|
# compute reduced attention_mask correponding to feature vectors
|
||
|
attention_mask = self._get_feature_vector_attention_mask(
|
||
|
extract_features.shape[1], attention_mask, add_adapter=False
|
||
|
)
|
||
|
|
||
|
quantized_features, codevector_perplexity = self.quantizer(
|
||
|
extract_features, mask_time_indices=mask_time_indices
|
||
|
)
|
||
|
quantized_features = self.project_q(quantized_features)
|
||
|
|
||
|
loss = contrastive_loss = diversity_loss = None
|
||
|
if sampled_negative_indices is not None:
|
||
|
batch_size, sequence_length, hidden_size = quantized_features.shape
|
||
|
|
||
|
# for training, we sample negatives
|
||
|
# 3. sample K negatives (distractors) quantized states for contrastive loss
|
||
|
# if attention_mask is passed, make sure that padded feature vectors cannot be sampled
|
||
|
# sample negative quantized vectors BTC => (BxT)C
|
||
|
negative_quantized_features = quantized_features.view(-1, hidden_size)[
|
||
|
sampled_negative_indices.long().view(-1)
|
||
|
]
|
||
|
negative_quantized_features = negative_quantized_features.view(
|
||
|
batch_size, sequence_length, -1, hidden_size
|
||
|
).permute(2, 0, 1, 3)
|
||
|
|
||
|
# 4. compute logits, corresponding to `logs = sim(c_t, [q_t, \sim{q}_t]) / \kappa`
|
||
|
# of equation (3) in https://arxiv.org/pdf/2006.11477.pdf
|
||
|
logits = self.compute_contrastive_logits(
|
||
|
quantized_features[None, :],
|
||
|
negative_quantized_features,
|
||
|
transformer_features,
|
||
|
self.config.contrastive_logits_temperature,
|
||
|
)
|
||
|
|
||
|
# 5. if a negative vector is identical to the positive (i.e. when codebook utilization is low),
|
||
|
# its cosine similarity will be masked
|
||
|
neg_is_pos = (quantized_features == negative_quantized_features).all(-1)
|
||
|
|
||
|
if neg_is_pos.any():
|
||
|
logits[1:][neg_is_pos] = float("-inf")
|
||
|
|
||
|
# 6. compute contrastive loss \mathbf{L}_m = cross_entropy(logs) =
|
||
|
# -log(exp(sim(c_t, q_t)/\kappa) / \sum_{\sim{q}} exp(sim(c_t, \sim{q})/\kappa))
|
||
|
logits = logits.transpose(0, 2).reshape(-1, logits.size(0))
|
||
|
target = ((1 - mask_time_indices.long()) * -100).transpose(0, 1).flatten()
|
||
|
|
||
|
contrastive_loss = nn.functional.cross_entropy(logits.float(), target, reduction="sum")
|
||
|
# 7. compute diversity loss: \mathbf{L}_d
|
||
|
num_codevectors = self.config.num_codevectors_per_group * self.config.num_codevector_groups
|
||
|
diversity_loss = ((num_codevectors - codevector_perplexity) / num_codevectors) * mask_time_indices.sum()
|
||
|
|
||
|
# 8. \mathbf{L} = \mathbf{L}_m + \alpha * \mathbf{L}_d
|
||
|
loss = contrastive_loss + self.config.diversity_loss_weight * diversity_loss
|
||
|
|
||
|
if not return_dict:
|
||
|
if loss is not None:
|
||
|
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
|
||
|
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
|
||
|
|
||
|
return Wav2Vec2ForPreTrainingOutput(
|
||
|
loss=loss,
|
||
|
projected_states=transformer_features,
|
||
|
projected_quantized_states=quantized_features,
|
||
|
codevector_perplexity=codevector_perplexity,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
contrastive_loss=contrastive_loss,
|
||
|
diversity_loss=diversity_loss,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings("""Wav2Vec2 Model with a `language modeling` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
|
||
|
class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
warnings.warn(
|
||
|
"The class `Wav2Vec2ForMaskedLM` is deprecated. Please use `Wav2Vec2ForCTC` instead.", FutureWarning
|
||
|
)
|
||
|
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
self.dropout = nn.Dropout(config.final_dropout)
|
||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: torch.FloatTensor,
|
||
|
attention_mask: Optional[torch.LongTensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, MaskedLMOutput]:
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[2:]
|
||
|
return output
|
||
|
|
||
|
return MaskedLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
|
||
|
WAV_2_VEC_2_START_DOCSTRING,
|
||
|
"""
|
||
|
target_lang (`str`, *optional*):
|
||
|
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
|
||
|
adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by
|
||
|
default.
|
||
|
""",
|
||
|
)
|
||
|
class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config, target_lang: Optional[str] = None):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
self.dropout = nn.Dropout(config.final_dropout)
|
||
|
|
||
|
self.target_lang = target_lang
|
||
|
|
||
|
if config.vocab_size is None:
|
||
|
raise ValueError(
|
||
|
f"You are trying to instantiate {self.__class__} with a configuration that "
|
||
|
"does not define the vocabulary size of the language model head. Please "
|
||
|
"instantiate the model as follows: `Wav2Vec2ForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
|
||
|
"or define `vocab_size` of your model's configuration."
|
||
|
)
|
||
|
output_hidden_size = (
|
||
|
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
|
||
|
)
|
||
|
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def tie_weights(self):
|
||
|
"""
|
||
|
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
|
||
|
passing `target_lang=...` to `from_pretrained(...)`.
|
||
|
|
||
|
This method is **not** supposed to be called by the user and is prone to be changed in the future.
|
||
|
"""
|
||
|
|
||
|
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
|
||
|
# correctly load adapter layers for Wav2Vec2 so that we do not have to introduce a new API to
|
||
|
# [`PreTrainedModel`]. While slightly hacky, Wav2Vec2 never has to tie input and output embeddings, so that it is
|
||
|
# ok to repurpose this function here.
|
||
|
target_lang = self.target_lang
|
||
|
|
||
|
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
|
||
|
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
|
||
|
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
|
||
|
logger.info("By default `target_lang` is set to 'eng'.")
|
||
|
elif target_lang is not None:
|
||
|
self.load_adapter(target_lang, force_load=True)
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
||
|
|
||
|
def freeze_base_model(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
||
|
be updated during training. Only the classification head will be updated.
|
||
|
"""
|
||
|
for param in self.wav2vec2.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
|
output_type=CausalLMOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
expected_output=_CTC_EXPECTED_OUTPUT,
|
||
|
expected_loss=_CTC_EXPECTED_LOSS,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, CausalLMOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
|
||
|
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
|
||
|
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
|
||
|
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
|
||
|
config.vocab_size - 1]`.
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
hidden_states = outputs[0]
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
|
||
|
logits = self.lm_head(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
if labels.max() >= self.config.vocab_size:
|
||
|
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
||
|
|
||
|
# retrieve loss input_lengths from attention_mask
|
||
|
attention_mask = (
|
||
|
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
|
||
|
)
|
||
|
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
|
||
|
|
||
|
# assuming that padded tokens are filled with -100
|
||
|
# when not being attended to
|
||
|
labels_mask = labels >= 0
|
||
|
target_lengths = labels_mask.sum(-1)
|
||
|
flattened_targets = labels.masked_select(labels_mask)
|
||
|
|
||
|
# ctc_loss doesn't support fp16
|
||
|
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
||
|
|
||
|
with torch.backends.cudnn.flags(enabled=False):
|
||
|
loss = nn.functional.ctc_loss(
|
||
|
log_probs,
|
||
|
flattened_targets,
|
||
|
input_lengths,
|
||
|
target_lengths,
|
||
|
blank=self.config.pad_token_id,
|
||
|
reduction=self.config.ctc_loss_reduction,
|
||
|
zero_infinity=self.config.ctc_zero_infinity,
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return CausalLMOutput(
|
||
|
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Wav2Vec2 Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
|
||
|
SUPERB Keyword Spotting.
|
||
|
""",
|
||
|
WAV_2_VEC_2_START_DOCSTRING,
|
||
|
)
|
||
|
class Wav2Vec2ForSequenceClassification(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if hasattr(config, "add_adapter") and config.add_adapter:
|
||
|
raise ValueError(
|
||
|
"Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
|
||
|
)
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
||
|
if config.use_weighted_layer_sum:
|
||
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
||
|
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
||
|
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
||
|
|
||
|
# Initialize weights and apply final processing
|
||
|
self.post_init()
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
||
|
|
||
|
def freeze_base_model(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
||
|
be updated during training. Only the classification head will be updated.
|
||
|
"""
|
||
|
for param in self.wav2vec2.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_SEQ_CLASS_CHECKPOINT,
|
||
|
output_type=SequenceClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="audio",
|
||
|
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
||
|
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, SequenceClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if self.config.use_weighted_layer_sum:
|
||
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
||
|
hidden_states = torch.stack(hidden_states, dim=1)
|
||
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
||
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
||
|
else:
|
||
|
hidden_states = outputs[0]
|
||
|
|
||
|
hidden_states = self.projector(hidden_states)
|
||
|
if attention_mask is None:
|
||
|
pooled_output = hidden_states.mean(dim=1)
|
||
|
else:
|
||
|
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
||
|
hidden_states[~padding_mask] = 0.0
|
||
|
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
||
|
|
||
|
logits = self.classifier(pooled_output)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return SequenceClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Wav2Vec2 Model with a frame classification head on top for tasks like Speaker Diarization.
|
||
|
""",
|
||
|
WAV_2_VEC_2_START_DOCSTRING,
|
||
|
)
|
||
|
class Wav2Vec2ForAudioFrameClassification(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
if hasattr(config, "add_adapter") and config.add_adapter:
|
||
|
raise ValueError(
|
||
|
"Audio frame classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
|
||
|
)
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
||
|
if config.use_weighted_layer_sum:
|
||
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
||
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
||
|
self.num_labels = config.num_labels
|
||
|
|
||
|
self.init_weights()
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
||
|
|
||
|
def freeze_base_model(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
||
|
be updated during training. Only the classification head will be updated.
|
||
|
"""
|
||
|
for param in self.wav2vec2.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_FRAME_CLASS_CHECKPOINT,
|
||
|
output_type=TokenClassifierOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="audio",
|
||
|
expected_output=_FRAME_EXPECTED_OUTPUT,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
) -> Union[Tuple, TokenClassifierOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if self.config.use_weighted_layer_sum:
|
||
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
||
|
hidden_states = torch.stack(hidden_states, dim=1)
|
||
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
||
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
||
|
else:
|
||
|
hidden_states = outputs[0]
|
||
|
|
||
|
logits = self.classifier(hidden_states)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
||
|
return output
|
||
|
|
||
|
return TokenClassifierOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|
||
|
|
||
|
|
||
|
class AMSoftmaxLoss(nn.Module):
|
||
|
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
|
||
|
super(AMSoftmaxLoss, self).__init__()
|
||
|
self.scale = scale
|
||
|
self.margin = margin
|
||
|
self.num_labels = num_labels
|
||
|
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
|
||
|
self.loss = nn.CrossEntropyLoss()
|
||
|
|
||
|
def forward(self, hidden_states, labels):
|
||
|
labels = labels.flatten()
|
||
|
weight = nn.functional.normalize(self.weight, dim=0)
|
||
|
hidden_states = nn.functional.normalize(hidden_states, dim=1)
|
||
|
cos_theta = torch.mm(hidden_states, weight)
|
||
|
psi = cos_theta - self.margin
|
||
|
|
||
|
onehot = nn.functional.one_hot(labels, self.num_labels)
|
||
|
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
|
||
|
loss = self.loss(logits, labels)
|
||
|
|
||
|
return loss
|
||
|
|
||
|
|
||
|
class TDNNLayer(nn.Module):
|
||
|
def __init__(self, config, layer_id=0):
|
||
|
super().__init__()
|
||
|
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
|
||
|
self.out_conv_dim = config.tdnn_dim[layer_id]
|
||
|
self.kernel_size = config.tdnn_kernel[layer_id]
|
||
|
self.dilation = config.tdnn_dilation[layer_id]
|
||
|
|
||
|
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
|
||
|
self.activation = nn.ReLU()
|
||
|
|
||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||
|
if is_peft_available():
|
||
|
from peft.tuners.lora import LoraLayer
|
||
|
|
||
|
if isinstance(self.kernel, LoraLayer):
|
||
|
warnings.warn(
|
||
|
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
|
||
|
"You should exclude TDNNLayer from LoRA's target modules.",
|
||
|
)
|
||
|
|
||
|
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
|
||
|
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
|
||
|
hidden_states = hidden_states.transpose(1, 2)
|
||
|
|
||
|
hidden_states = self.activation(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
@add_start_docstrings(
|
||
|
"""
|
||
|
Wav2Vec2 Model with an XVector feature extraction head on top for tasks like Speaker Verification.
|
||
|
""",
|
||
|
WAV_2_VEC_2_START_DOCSTRING,
|
||
|
)
|
||
|
class Wav2Vec2ForXVector(Wav2Vec2PreTrainedModel):
|
||
|
def __init__(self, config):
|
||
|
super().__init__(config)
|
||
|
|
||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||
|
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
||
|
if config.use_weighted_layer_sum:
|
||
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
||
|
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
|
||
|
|
||
|
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
|
||
|
self.tdnn = nn.ModuleList(tdnn_layers)
|
||
|
|
||
|
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
|
||
|
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
|
||
|
|
||
|
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
|
||
|
|
||
|
self.init_weights()
|
||
|
|
||
|
def freeze_feature_extractor(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
||
|
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
self.freeze_feature_encoder()
|
||
|
|
||
|
def freeze_feature_encoder(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
||
|
not be updated during training.
|
||
|
"""
|
||
|
self.wav2vec2.feature_extractor._freeze_parameters()
|
||
|
|
||
|
def freeze_base_model(self):
|
||
|
"""
|
||
|
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
||
|
be updated during training. Only the classification head will be updated.
|
||
|
"""
|
||
|
for param in self.wav2vec2.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
|
||
|
"""
|
||
|
Computes the output length of the TDNN layers
|
||
|
"""
|
||
|
|
||
|
def _conv_out_length(input_length, kernel_size, stride):
|
||
|
# 1D convolutional layer output length formula taken
|
||
|
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
||
|
return (input_length - kernel_size) // stride + 1
|
||
|
|
||
|
for kernel_size in self.config.tdnn_kernel:
|
||
|
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
|
||
|
|
||
|
return input_lengths
|
||
|
|
||
|
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
|
||
|
@add_code_sample_docstrings(
|
||
|
checkpoint=_XVECTOR_CHECKPOINT,
|
||
|
output_type=XVectorOutput,
|
||
|
config_class=_CONFIG_FOR_DOC,
|
||
|
modality="audio",
|
||
|
expected_output=_XVECTOR_EXPECTED_OUTPUT,
|
||
|
)
|
||
|
def forward(
|
||
|
self,
|
||
|
input_values: Optional[torch.Tensor],
|
||
|
attention_mask: Optional[torch.Tensor] = None,
|
||
|
output_attentions: Optional[bool] = None,
|
||
|
output_hidden_states: Optional[bool] = None,
|
||
|
return_dict: Optional[bool] = None,
|
||
|
labels: Optional[torch.Tensor] = None,
|
||
|
) -> Union[Tuple, XVectorOutput]:
|
||
|
r"""
|
||
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||
|
"""
|
||
|
|
||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
||
|
|
||
|
outputs = self.wav2vec2(
|
||
|
input_values,
|
||
|
attention_mask=attention_mask,
|
||
|
output_attentions=output_attentions,
|
||
|
output_hidden_states=output_hidden_states,
|
||
|
return_dict=return_dict,
|
||
|
)
|
||
|
|
||
|
if self.config.use_weighted_layer_sum:
|
||
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
||
|
hidden_states = torch.stack(hidden_states, dim=1)
|
||
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
||
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
||
|
else:
|
||
|
hidden_states = outputs[0]
|
||
|
|
||
|
hidden_states = self.projector(hidden_states)
|
||
|
|
||
|
for tdnn_layer in self.tdnn:
|
||
|
hidden_states = tdnn_layer(hidden_states)
|
||
|
|
||
|
# Statistic Pooling
|
||
|
if attention_mask is None:
|
||
|
mean_features = hidden_states.mean(dim=1)
|
||
|
std_features = hidden_states.std(dim=1)
|
||
|
else:
|
||
|
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
|
||
|
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
|
||
|
mean_features = []
|
||
|
std_features = []
|
||
|
for i, length in enumerate(tdnn_output_lengths):
|
||
|
mean_features.append(hidden_states[i, :length].mean(dim=0))
|
||
|
std_features.append(hidden_states[i, :length].std(dim=0))
|
||
|
mean_features = torch.stack(mean_features)
|
||
|
std_features = torch.stack(std_features)
|
||
|
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
|
||
|
|
||
|
output_embeddings = self.feature_extractor(statistic_pooling)
|
||
|
logits = self.classifier(output_embeddings)
|
||
|
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
loss = self.objective(logits, labels)
|
||
|
|
||
|
if not return_dict:
|
||
|
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
|
||
|
return ((loss,) + output) if loss is not None else output
|
||
|
|
||
|
return XVectorOutput(
|
||
|
loss=loss,
|
||
|
logits=logits,
|
||
|
embeddings=output_embeddings,
|
||
|
hidden_states=outputs.hidden_states,
|
||
|
attentions=outputs.attentions,
|
||
|
)
|