ai-content-maker/.venv/Lib/site-packages/transformers/models/whisper/configuration_whisper.py

344 lines
17 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Whisper model configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
# fmt: off
NON_SPEECH_TOKENS = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
NON_SPEECH_TOKENS_MULTI = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
# fmt: on
class WhisperConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Whisper
[openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51865):
Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
`decoder_input_ids` passed when calling [`WhisperModel`]
num_mel_bins (`int`, *optional*, defaults to 80):
Number of mel features used per input features. Should correspond to the value used in the
`WhisperProcessor` class.
encoder_layers (`int`, *optional*, defaults to 4):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 4):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_start_token_id (`int`, *optional*, defaults to 50257):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
d_model (`int`, *optional*, defaults to 384):
Dimensionality of the layers.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to False):
Scale embeddings by diving by sqrt(d_model).
max_source_positions (`int`, *optional*, defaults to 1500):
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
max_target_positions (`int`, *optional*, defaults to 448):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
pad_token_id (`int`, *optional*, defaults to 50256):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 50256):
Begin of stream token id.
eos_token_id (`int`, *optional*, defaults to 50256):
End of stream token id.
suppress_tokens (`List[int]`, *optional*):
A list containing the non-speech tokens that will be used by the logit processor in the `generate`
function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
`multilingual` model.
begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
the token for `" "` (`blank_token_id`) and the `eos_token_id`
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`WhisperForAudioClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
instance of [`WhisperForAudioClassification`].
apply_spec_augment (`bool`, *optional*, defaults to `False`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
median_filter_width (`int`, *optional*, defaults to 7):
Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
Should be an odd number.
Example:
```python
>>> from transformers import WhisperConfig, WhisperModel
>>> # Initializing a Whisper tiny style configuration
>>> configuration = WhisperConfig()
>>> # Initializing a model (with random weights) from the tiny style configuration
>>> model = WhisperModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "whisper"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=51865,
num_mel_bins=80,
encoder_layers=4,
encoder_attention_heads=6,
decoder_layers=4,
decoder_attention_heads=6,
decoder_ffn_dim=1536,
encoder_ffn_dim=1536,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
decoder_start_token_id=50257,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=384,
dropout=0.0,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
scale_embedding=False,
max_source_positions=1500,
max_target_positions=448,
pad_token_id=50256,
bos_token_id=50256,
eos_token_id=50256,
suppress_tokens=None,
begin_suppress_tokens=[220, 50256],
use_weighted_layer_sum=False,
classifier_proj_size=256,
apply_spec_augment=False,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
median_filter_width=7,
**kwargs,
):
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.d_model = d_model
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
self.use_weighted_layer_sum = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
self.median_filter_width = median_filter_width
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
suppress_tokens=suppress_tokens,
begin_suppress_tokens=begin_suppress_tokens,
**kwargs,
)
class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
sampling_rate: int = 22050,
time_duration: float = 5.0,
frequency: int = 220,
) -> Mapping[str, Any]:
dummy_inputs = OrderedDict()
encoder_inputs = OnnxConfig.generate_dummy_inputs(
self,
preprocessor=preprocessor.feature_extractor,
batch_size=batch_size,
framework=framework,
sampling_rate=sampling_rate,
time_duration=time_duration,
frequency=frequency,
)
encoder_sequence_length = encoder_inputs["input_features"].shape[2]
seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
decoder_inputs = super().generate_dummy_inputs(
preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
)
dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
if "past_key_values" in decoder_inputs:
dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
return dummy_inputs
@property
def atol_for_validation(self) -> float:
return 1e-3