381 lines
16 KiB
Python
381 lines
16 KiB
Python
|
# Copyright 2019 The TensorFlow Authors, The Hugging Face Team. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Functions and classes related to optimization (weight updates)."""
|
||
|
|
||
|
|
||
|
import re
|
||
|
from typing import Callable, List, Optional, Union
|
||
|
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
try:
|
||
|
from tf_keras.optimizers.legacy import Adam
|
||
|
except (ImportError, ModuleNotFoundError):
|
||
|
from tensorflow.keras.optimizers.legacy import Adam
|
||
|
|
||
|
from .modeling_tf_utils import keras
|
||
|
|
||
|
|
||
|
# This block because Keras loves randomly moving things to different places - this changed somewhere between 2.10 - 2.15
|
||
|
if hasattr(keras.optimizers.schedules, "learning_rate_schedule"):
|
||
|
schedules = keras.optimizers.schedules.learning_rate_schedule
|
||
|
else:
|
||
|
schedules = keras.optimizers.schedules
|
||
|
|
||
|
|
||
|
class WarmUp(schedules.LearningRateSchedule):
|
||
|
"""
|
||
|
Applies a warmup schedule on a given learning rate decay schedule.
|
||
|
|
||
|
Args:
|
||
|
initial_learning_rate (`float`):
|
||
|
The initial learning rate for the schedule after the warmup (so this will be the learning rate at the end
|
||
|
of the warmup).
|
||
|
decay_schedule_fn (`Callable`):
|
||
|
The schedule function to apply after the warmup for the rest of training.
|
||
|
warmup_steps (`int`):
|
||
|
The number of steps for the warmup part of training.
|
||
|
power (`float`, *optional*, defaults to 1.0):
|
||
|
The power to use for the polynomial warmup (defaults is a linear warmup).
|
||
|
name (`str`, *optional*):
|
||
|
Optional name prefix for the returned tensors during the schedule.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
initial_learning_rate: float,
|
||
|
decay_schedule_fn: Callable,
|
||
|
warmup_steps: int,
|
||
|
power: float = 1.0,
|
||
|
name: str = None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.initial_learning_rate = initial_learning_rate
|
||
|
self.warmup_steps = warmup_steps
|
||
|
self.power = power
|
||
|
self.decay_schedule_fn = decay_schedule_fn
|
||
|
self.name = name
|
||
|
|
||
|
def __call__(self, step):
|
||
|
with tf.name_scope(self.name or "WarmUp") as name:
|
||
|
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
|
||
|
# learning rate will be `global_step/num_warmup_steps * init_lr`.
|
||
|
global_step_float = tf.cast(step, tf.float32)
|
||
|
warmup_steps_float = tf.cast(self.warmup_steps, tf.float32)
|
||
|
warmup_percent_done = global_step_float / warmup_steps_float
|
||
|
warmup_learning_rate = self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power)
|
||
|
return tf.cond(
|
||
|
global_step_float < warmup_steps_float,
|
||
|
lambda: warmup_learning_rate,
|
||
|
lambda: self.decay_schedule_fn(step - self.warmup_steps),
|
||
|
name=name,
|
||
|
)
|
||
|
|
||
|
def get_config(self):
|
||
|
return {
|
||
|
"initial_learning_rate": self.initial_learning_rate,
|
||
|
"decay_schedule_fn": self.decay_schedule_fn,
|
||
|
"warmup_steps": self.warmup_steps,
|
||
|
"power": self.power,
|
||
|
"name": self.name,
|
||
|
}
|
||
|
|
||
|
|
||
|
def create_optimizer(
|
||
|
init_lr: float,
|
||
|
num_train_steps: int,
|
||
|
num_warmup_steps: int,
|
||
|
min_lr_ratio: float = 0.0,
|
||
|
adam_beta1: float = 0.9,
|
||
|
adam_beta2: float = 0.999,
|
||
|
adam_epsilon: float = 1e-8,
|
||
|
adam_clipnorm: Optional[float] = None,
|
||
|
adam_global_clipnorm: Optional[float] = None,
|
||
|
weight_decay_rate: float = 0.0,
|
||
|
power: float = 1.0,
|
||
|
include_in_weight_decay: Optional[List[str]] = None,
|
||
|
):
|
||
|
"""
|
||
|
Creates an optimizer with a learning rate schedule using a warmup phase followed by a linear decay.
|
||
|
|
||
|
Args:
|
||
|
init_lr (`float`):
|
||
|
The desired learning rate at the end of the warmup phase.
|
||
|
num_train_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of warmup steps.
|
||
|
min_lr_ratio (`float`, *optional*, defaults to 0):
|
||
|
The final learning rate at the end of the linear decay will be `init_lr * min_lr_ratio`.
|
||
|
adam_beta1 (`float`, *optional*, defaults to 0.9):
|
||
|
The beta1 to use in Adam.
|
||
|
adam_beta2 (`float`, *optional*, defaults to 0.999):
|
||
|
The beta2 to use in Adam.
|
||
|
adam_epsilon (`float`, *optional*, defaults to 1e-8):
|
||
|
The epsilon to use in Adam.
|
||
|
adam_clipnorm (`float`, *optional*, defaults to `None`):
|
||
|
If not `None`, clip the gradient norm for each weight tensor to this value.
|
||
|
adam_global_clipnorm (`float`, *optional*, defaults to `None`)
|
||
|
If not `None`, clip gradient norm to this value. When using this argument, the norm is computed over all
|
||
|
weight tensors, as if they were concatenated into a single vector.
|
||
|
weight_decay_rate (`float`, *optional*, defaults to 0):
|
||
|
The weight decay to use.
|
||
|
power (`float`, *optional*, defaults to 1.0):
|
||
|
The power to use for PolynomialDecay.
|
||
|
include_in_weight_decay (`List[str]`, *optional*):
|
||
|
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
|
||
|
applied to all parameters except bias and layer norm parameters.
|
||
|
"""
|
||
|
# Implements linear decay of the learning rate.
|
||
|
lr_schedule = schedules.PolynomialDecay(
|
||
|
initial_learning_rate=init_lr,
|
||
|
decay_steps=num_train_steps - num_warmup_steps,
|
||
|
end_learning_rate=init_lr * min_lr_ratio,
|
||
|
power=power,
|
||
|
)
|
||
|
if num_warmup_steps:
|
||
|
lr_schedule = WarmUp(
|
||
|
initial_learning_rate=init_lr,
|
||
|
decay_schedule_fn=lr_schedule,
|
||
|
warmup_steps=num_warmup_steps,
|
||
|
)
|
||
|
if weight_decay_rate > 0.0:
|
||
|
optimizer = AdamWeightDecay(
|
||
|
learning_rate=lr_schedule,
|
||
|
weight_decay_rate=weight_decay_rate,
|
||
|
beta_1=adam_beta1,
|
||
|
beta_2=adam_beta2,
|
||
|
epsilon=adam_epsilon,
|
||
|
clipnorm=adam_clipnorm,
|
||
|
global_clipnorm=adam_global_clipnorm,
|
||
|
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"],
|
||
|
include_in_weight_decay=include_in_weight_decay,
|
||
|
)
|
||
|
else:
|
||
|
optimizer = keras.optimizers.Adam(
|
||
|
learning_rate=lr_schedule,
|
||
|
beta_1=adam_beta1,
|
||
|
beta_2=adam_beta2,
|
||
|
epsilon=adam_epsilon,
|
||
|
clipnorm=adam_clipnorm,
|
||
|
global_clipnorm=adam_global_clipnorm,
|
||
|
)
|
||
|
# We return the optimizer and the LR scheduler in order to better track the
|
||
|
# evolution of the LR independently of the optimizer.
|
||
|
return optimizer, lr_schedule
|
||
|
|
||
|
|
||
|
class AdamWeightDecay(Adam):
|
||
|
"""
|
||
|
Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the
|
||
|
loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact
|
||
|
with the m and v parameters in strange ways as shown in [Decoupled Weight Decay
|
||
|
Regularization](https://arxiv.org/abs/1711.05101).
|
||
|
|
||
|
Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent
|
||
|
to adding the square of the weights to the loss with plain (non-momentum) SGD.
|
||
|
|
||
|
Args:
|
||
|
learning_rate (`Union[float, LearningRateSchedule]`, *optional*, defaults to 0.001):
|
||
|
The learning rate to use or a schedule.
|
||
|
beta_1 (`float`, *optional*, defaults to 0.9):
|
||
|
The beta1 parameter in Adam, which is the exponential decay rate for the 1st momentum estimates.
|
||
|
beta_2 (`float`, *optional*, defaults to 0.999):
|
||
|
The beta2 parameter in Adam, which is the exponential decay rate for the 2nd momentum estimates.
|
||
|
epsilon (`float`, *optional*, defaults to 1e-07):
|
||
|
The epsilon parameter in Adam, which is a small constant for numerical stability.
|
||
|
amsgrad (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to apply AMSGrad variant of this algorithm or not, see [On the Convergence of Adam and
|
||
|
Beyond](https://arxiv.org/abs/1904.09237).
|
||
|
weight_decay_rate (`float`, *optional*, defaults to 0.0):
|
||
|
The weight decay to apply.
|
||
|
include_in_weight_decay (`List[str]`, *optional*):
|
||
|
List of the parameter names (or re patterns) to apply weight decay to. If none is passed, weight decay is
|
||
|
applied to all parameters by default (unless they are in `exclude_from_weight_decay`).
|
||
|
exclude_from_weight_decay (`List[str]`, *optional*):
|
||
|
List of the parameter names (or re patterns) to exclude from applying weight decay to. If a
|
||
|
`include_in_weight_decay` is passed, the names in it will supersede this list.
|
||
|
name (`str`, *optional*, defaults to `"AdamWeightDecay"`):
|
||
|
Optional name for the operations created when applying gradients.
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
Keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by
|
||
|
norm; `clipvalue` is clip gradients by value, `decay` is included for backward compatibility to allow time
|
||
|
inverse decay of learning rate. `lr` is included for backward compatibility, recommended to use
|
||
|
`learning_rate` instead.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
learning_rate: Union[float, schedules.LearningRateSchedule] = 0.001,
|
||
|
beta_1: float = 0.9,
|
||
|
beta_2: float = 0.999,
|
||
|
epsilon: float = 1e-7,
|
||
|
amsgrad: bool = False,
|
||
|
weight_decay_rate: float = 0.0,
|
||
|
include_in_weight_decay: Optional[List[str]] = None,
|
||
|
exclude_from_weight_decay: Optional[List[str]] = None,
|
||
|
name: str = "AdamWeightDecay",
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs)
|
||
|
self.weight_decay_rate = weight_decay_rate
|
||
|
self._include_in_weight_decay = include_in_weight_decay
|
||
|
self._exclude_from_weight_decay = exclude_from_weight_decay
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, config):
|
||
|
"""Creates an optimizer from its config with WarmUp custom object."""
|
||
|
custom_objects = {"WarmUp": WarmUp}
|
||
|
return super(AdamWeightDecay, cls).from_config(config, custom_objects=custom_objects)
|
||
|
|
||
|
def _prepare_local(self, var_device, var_dtype, apply_state):
|
||
|
super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state)
|
||
|
apply_state[(var_device, var_dtype)]["weight_decay_rate"] = tf.constant(
|
||
|
self.weight_decay_rate, name="adam_weight_decay_rate"
|
||
|
)
|
||
|
|
||
|
def _decay_weights_op(self, var, learning_rate, apply_state):
|
||
|
do_decay = self._do_use_weight_decay(var.name)
|
||
|
if do_decay:
|
||
|
return var.assign_sub(
|
||
|
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["weight_decay_rate"],
|
||
|
use_locking=self._use_locking,
|
||
|
)
|
||
|
return tf.no_op()
|
||
|
|
||
|
def apply_gradients(self, grads_and_vars, name=None, **kwargs):
|
||
|
grads, tvars = list(zip(*grads_and_vars))
|
||
|
return super(AdamWeightDecay, self).apply_gradients(zip(grads, tvars), name=name, **kwargs)
|
||
|
|
||
|
def _get_lr(self, var_device, var_dtype, apply_state):
|
||
|
"""Retrieves the learning rate with the given state."""
|
||
|
if apply_state is None:
|
||
|
return self._decayed_lr_t[var_dtype], {}
|
||
|
|
||
|
apply_state = apply_state or {}
|
||
|
coefficients = apply_state.get((var_device, var_dtype))
|
||
|
if coefficients is None:
|
||
|
coefficients = self._fallback_apply_state(var_device, var_dtype)
|
||
|
apply_state[(var_device, var_dtype)] = coefficients
|
||
|
|
||
|
return coefficients["lr_t"], {"apply_state": apply_state}
|
||
|
|
||
|
def _resource_apply_dense(self, grad, var, apply_state=None):
|
||
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
|
||
|
decay = self._decay_weights_op(var, lr_t, apply_state)
|
||
|
with tf.control_dependencies([decay]):
|
||
|
return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs)
|
||
|
|
||
|
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
|
||
|
lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state)
|
||
|
decay = self._decay_weights_op(var, lr_t, apply_state)
|
||
|
with tf.control_dependencies([decay]):
|
||
|
return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs)
|
||
|
|
||
|
def get_config(self):
|
||
|
config = super().get_config()
|
||
|
config.update({"weight_decay_rate": self.weight_decay_rate})
|
||
|
return config
|
||
|
|
||
|
def _do_use_weight_decay(self, param_name):
|
||
|
"""Whether to use L2 weight decay for `param_name`."""
|
||
|
if self.weight_decay_rate == 0:
|
||
|
return False
|
||
|
|
||
|
if self._include_in_weight_decay:
|
||
|
for r in self._include_in_weight_decay:
|
||
|
if re.search(r, param_name) is not None:
|
||
|
return True
|
||
|
|
||
|
if self._exclude_from_weight_decay:
|
||
|
for r in self._exclude_from_weight_decay:
|
||
|
if re.search(r, param_name) is not None:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
# Extracted from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py
|
||
|
class GradientAccumulator:
|
||
|
"""
|
||
|
Gradient accumulation utility. When used with a distribution strategy, the accumulator should be called in a
|
||
|
replica context. Gradients will be accumulated locally on each replica and without synchronization. Users should
|
||
|
then call `.gradients`, scale the gradients if required, and pass the result to `apply_gradients`.
|
||
|
"""
|
||
|
|
||
|
# We use the ON_READ synchronization policy so that no synchronization is
|
||
|
# performed on assignment. To get the value, we call .value() which returns the
|
||
|
# value on the current replica without synchronization.
|
||
|
|
||
|
def __init__(self):
|
||
|
"""Initializes the accumulator."""
|
||
|
self._gradients = []
|
||
|
self._accum_steps = None
|
||
|
|
||
|
@property
|
||
|
def step(self):
|
||
|
"""Number of accumulated steps."""
|
||
|
if self._accum_steps is None:
|
||
|
self._accum_steps = tf.Variable(
|
||
|
tf.constant(0, dtype=tf.int64),
|
||
|
trainable=False,
|
||
|
synchronization=tf.VariableSynchronization.ON_READ,
|
||
|
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
|
||
|
)
|
||
|
|
||
|
return self._accum_steps.value()
|
||
|
|
||
|
@property
|
||
|
def gradients(self):
|
||
|
"""The accumulated gradients on the current replica."""
|
||
|
if not self._gradients:
|
||
|
raise ValueError("The accumulator should be called first to initialize the gradients")
|
||
|
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
|
||
|
|
||
|
def __call__(self, gradients):
|
||
|
"""Accumulates `gradients` on the current replica."""
|
||
|
if not self._gradients:
|
||
|
_ = self.step # Create the step variable.
|
||
|
self._gradients.extend(
|
||
|
[
|
||
|
tf.Variable(
|
||
|
tf.zeros_like(gradient),
|
||
|
trainable=False,
|
||
|
synchronization=tf.VariableSynchronization.ON_READ,
|
||
|
aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,
|
||
|
)
|
||
|
if gradient is not None
|
||
|
else gradient
|
||
|
for gradient in gradients
|
||
|
]
|
||
|
)
|
||
|
if len(gradients) != len(self._gradients):
|
||
|
raise ValueError(f"Expected {len(self._gradients)} gradients, but got {len(gradients)}")
|
||
|
|
||
|
for accum_gradient, gradient in zip(self._gradients, gradients):
|
||
|
if accum_gradient is not None and gradient is not None:
|
||
|
accum_gradient.assign_add(gradient)
|
||
|
|
||
|
self._accum_steps.assign_add(1)
|
||
|
|
||
|
def reset(self):
|
||
|
"""Resets the accumulated gradients on the current replica."""
|
||
|
if not self._gradients:
|
||
|
return
|
||
|
self._accum_steps.assign(0)
|
||
|
for gradient in self._gradients:
|
||
|
if gradient is not None:
|
||
|
gradient.assign(tf.zeros_like(gradient))
|