297 lines
12 KiB
Python
297 lines
12 KiB
Python
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import inspect
|
||
|
from typing import Callable, List, Optional, Set, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from packaging import version
|
||
|
from safetensors.torch import storage_ptr, storage_size
|
||
|
from torch import nn
|
||
|
|
||
|
from .utils import is_torch_xla_available, logging
|
||
|
|
||
|
|
||
|
ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version)
|
||
|
|
||
|
is_torch_greater_or_equal_than_2_2 = parsed_torch_version_base >= version.parse("2.2")
|
||
|
is_torch_greater_or_equal_than_2_1 = parsed_torch_version_base >= version.parse("2.1")
|
||
|
is_torch_greater_or_equal_than_2_0 = parsed_torch_version_base >= version.parse("2.0")
|
||
|
is_torch_greater_or_equal_than_1_13 = parsed_torch_version_base >= version.parse("1.13")
|
||
|
is_torch_greater_or_equal_than_1_12 = parsed_torch_version_base >= version.parse("1.12")
|
||
|
|
||
|
|
||
|
def softmax_backward_data(parent, grad_output, output, dim, self):
|
||
|
"""
|
||
|
A function that calls the internal `_softmax_backward_data` PyTorch method and that adjusts the arguments according
|
||
|
to the torch version detected.
|
||
|
"""
|
||
|
|
||
|
from torch import _softmax_backward_data
|
||
|
|
||
|
return _softmax_backward_data(grad_output, output, parent.dim, self.dtype)
|
||
|
|
||
|
|
||
|
def prune_linear_layer(layer: nn.Linear, index: torch.LongTensor, dim: int = 0) -> nn.Linear:
|
||
|
"""
|
||
|
Prune a linear layer to keep only entries in index.
|
||
|
|
||
|
Used to remove heads.
|
||
|
|
||
|
Args:
|
||
|
layer (`torch.nn.Linear`): The layer to prune.
|
||
|
index (`torch.LongTensor`): The indices to keep in the layer.
|
||
|
dim (`int`, *optional*, defaults to 0): The dimension on which to keep the indices.
|
||
|
|
||
|
Returns:
|
||
|
`torch.nn.Linear`: The pruned layer as a new layer with `requires_grad=True`.
|
||
|
"""
|
||
|
index = index.to(layer.weight.device)
|
||
|
W = layer.weight.index_select(dim, index).clone().detach()
|
||
|
if layer.bias is not None:
|
||
|
if dim == 1:
|
||
|
b = layer.bias.clone().detach()
|
||
|
else:
|
||
|
b = layer.bias[index].clone().detach()
|
||
|
new_size = list(layer.weight.size())
|
||
|
new_size[dim] = len(index)
|
||
|
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
|
||
|
new_layer.weight.requires_grad = False
|
||
|
new_layer.weight.copy_(W.contiguous())
|
||
|
new_layer.weight.requires_grad = True
|
||
|
if layer.bias is not None:
|
||
|
new_layer.bias.requires_grad = False
|
||
|
new_layer.bias.copy_(b.contiguous())
|
||
|
new_layer.bias.requires_grad = True
|
||
|
return new_layer
|
||
|
|
||
|
|
||
|
class Conv1D(nn.Module):
|
||
|
"""
|
||
|
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
||
|
|
||
|
Basically works like a linear layer but the weights are transposed.
|
||
|
|
||
|
Args:
|
||
|
nf (`int`): The number of output features.
|
||
|
nx (`int`): The number of input features.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, nf, nx):
|
||
|
super().__init__()
|
||
|
self.nf = nf
|
||
|
self.weight = nn.Parameter(torch.empty(nx, nf))
|
||
|
self.bias = nn.Parameter(torch.zeros(nf))
|
||
|
nn.init.normal_(self.weight, std=0.02)
|
||
|
|
||
|
def forward(self, x):
|
||
|
size_out = x.size()[:-1] + (self.nf,)
|
||
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
||
|
x = x.view(size_out)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
|
||
|
"""
|
||
|
Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
|
||
|
are transposed.
|
||
|
|
||
|
Used to remove heads.
|
||
|
|
||
|
Args:
|
||
|
layer ([`~pytorch_utils.Conv1D`]): The layer to prune.
|
||
|
index (`torch.LongTensor`): The indices to keep in the layer.
|
||
|
dim (`int`, *optional*, defaults to 1): The dimension on which to keep the indices.
|
||
|
|
||
|
Returns:
|
||
|
[`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
|
||
|
"""
|
||
|
index = index.to(layer.weight.device)
|
||
|
W = layer.weight.index_select(dim, index).clone().detach()
|
||
|
if dim == 0:
|
||
|
b = layer.bias.clone().detach()
|
||
|
else:
|
||
|
b = layer.bias[index].clone().detach()
|
||
|
new_size = list(layer.weight.size())
|
||
|
new_size[dim] = len(index)
|
||
|
new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
|
||
|
new_layer.weight.requires_grad = False
|
||
|
new_layer.weight.copy_(W.contiguous())
|
||
|
new_layer.weight.requires_grad = True
|
||
|
new_layer.bias.requires_grad = False
|
||
|
new_layer.bias.copy_(b.contiguous())
|
||
|
new_layer.bias.requires_grad = True
|
||
|
return new_layer
|
||
|
|
||
|
|
||
|
def prune_layer(
|
||
|
layer: Union[nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
|
||
|
) -> Union[nn.Linear, Conv1D]:
|
||
|
"""
|
||
|
Prune a Conv1D or linear layer to keep only entries in index.
|
||
|
|
||
|
Used to remove heads.
|
||
|
|
||
|
Args:
|
||
|
layer (`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
|
||
|
index (`torch.LongTensor`): The indices to keep in the layer.
|
||
|
dim (`int`, *optional*): The dimension on which to keep the indices.
|
||
|
|
||
|
Returns:
|
||
|
`torch.nn.Linear` or [`~pytorch_utils.Conv1D`]: The pruned layer as a new layer with `requires_grad=True`.
|
||
|
"""
|
||
|
if isinstance(layer, nn.Linear):
|
||
|
return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
|
||
|
elif isinstance(layer, Conv1D):
|
||
|
return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
|
||
|
else:
|
||
|
raise ValueError(f"Can't prune layer of class {layer.__class__}")
|
||
|
|
||
|
|
||
|
def apply_chunking_to_forward(
|
||
|
forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
This function chunks the `input_tensors` into smaller input tensor parts of size `chunk_size` over the dimension
|
||
|
`chunk_dim`. It then applies a layer `forward_fn` to each chunk independently to save memory.
|
||
|
|
||
|
If the `forward_fn` is independent across the `chunk_dim` this function will yield the same result as directly
|
||
|
applying `forward_fn` to `input_tensors`.
|
||
|
|
||
|
Args:
|
||
|
forward_fn (`Callable[..., torch.Tensor]`):
|
||
|
The forward function of the model.
|
||
|
chunk_size (`int`):
|
||
|
The chunk size of a chunked tensor: `num_chunks = len(input_tensors[0]) / chunk_size`.
|
||
|
chunk_dim (`int`):
|
||
|
The dimension over which the `input_tensors` should be chunked.
|
||
|
input_tensors (`Tuple[torch.Tensor]`):
|
||
|
The input tensors of `forward_fn` which will be chunked
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: A tensor with the same shape as the `forward_fn` would have given if applied`.
|
||
|
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
# rename the usual forward() fn to forward_chunk()
|
||
|
def forward_chunk(self, hidden_states):
|
||
|
hidden_states = self.decoder(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
# implement a chunked forward function
|
||
|
def forward(self, hidden_states):
|
||
|
return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
|
||
|
```"""
|
||
|
|
||
|
assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
|
||
|
|
||
|
# inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
|
||
|
num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
|
||
|
if num_args_in_forward_chunk_fn != len(input_tensors):
|
||
|
raise ValueError(
|
||
|
f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
|
||
|
"tensors are given"
|
||
|
)
|
||
|
|
||
|
if chunk_size > 0:
|
||
|
tensor_shape = input_tensors[0].shape[chunk_dim]
|
||
|
for input_tensor in input_tensors:
|
||
|
if input_tensor.shape[chunk_dim] != tensor_shape:
|
||
|
raise ValueError(
|
||
|
f"All input tenors have to be of the same shape: {tensor_shape}, "
|
||
|
f"found shape {input_tensor.shape[chunk_dim]}"
|
||
|
)
|
||
|
|
||
|
if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
|
||
|
raise ValueError(
|
||
|
f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
|
||
|
f"size {chunk_size}"
|
||
|
)
|
||
|
|
||
|
num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size
|
||
|
|
||
|
# chunk input tensor into tuples
|
||
|
input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
|
||
|
# apply forward fn to every tuple
|
||
|
output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
|
||
|
# concatenate output at same dimension
|
||
|
return torch.cat(output_chunks, dim=chunk_dim)
|
||
|
|
||
|
return forward_fn(*input_tensors)
|
||
|
|
||
|
|
||
|
def find_pruneable_heads_and_indices(
|
||
|
heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
|
||
|
) -> Tuple[Set[int], torch.LongTensor]:
|
||
|
"""
|
||
|
Finds the heads and their indices taking `already_pruned_heads` into account.
|
||
|
|
||
|
Args:
|
||
|
heads (`List[int]`): List of the indices of heads to prune.
|
||
|
n_heads (`int`): The number of heads in the model.
|
||
|
head_size (`int`): The size of each head.
|
||
|
already_pruned_heads (`Set[int]`): A set of already pruned heads.
|
||
|
|
||
|
Returns:
|
||
|
`Tuple[Set[int], torch.LongTensor]`: A tuple with the indices of heads to prune taking `already_pruned_heads`
|
||
|
into account and the indices of rows/columns to keep in the layer weight.
|
||
|
"""
|
||
|
mask = torch.ones(n_heads, head_size)
|
||
|
heads = set(heads) - already_pruned_heads # Convert to set and remove already pruned heads
|
||
|
for head in heads:
|
||
|
# Compute how many pruned heads are before the head and move the index accordingly
|
||
|
head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
|
||
|
mask[head] = 0
|
||
|
mask = mask.view(-1).contiguous().eq(1)
|
||
|
index: torch.LongTensor = torch.arange(len(mask))[mask].long()
|
||
|
return heads, index
|
||
|
|
||
|
|
||
|
def meshgrid(
|
||
|
*tensors: Union[torch.Tensor, List[torch.Tensor]], indexing: Optional[str] = None
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
"""
|
||
|
Wrapper around torch.meshgrid to avoid warning messages about the introduced `indexing` argument.
|
||
|
|
||
|
Reference: https://pytorch.org/docs/1.13/generated/torch.meshgrid.html
|
||
|
"""
|
||
|
return torch.meshgrid(*tensors, indexing=indexing)
|
||
|
|
||
|
|
||
|
def id_tensor_storage(tensor: torch.Tensor) -> Tuple[torch.device, int, int]:
|
||
|
"""
|
||
|
Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
|
||
|
example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
|
||
|
guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
|
||
|
non-overlapping lifetimes may have the same id.
|
||
|
"""
|
||
|
if tensor.device.type == "xla" and is_torch_xla_available():
|
||
|
# NOTE: xla tensors dont have storage
|
||
|
# use some other unique id to distinguish.
|
||
|
# this is a XLA tensor, it must be created using torch_xla's
|
||
|
# device. So the following import is safe:
|
||
|
import torch_xla
|
||
|
|
||
|
unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
|
||
|
else:
|
||
|
unique_id = storage_ptr(tensor)
|
||
|
|
||
|
return tensor.device, unique_id, storage_size(tensor)
|