ai-content-maker/.venv/Lib/site-packages/transformers/quantizers/quantizer_aqlm.py

99 lines
3.6 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
from typing import TYPE_CHECKING, Optional
from packaging import version
from .base import HfQuantizer
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..integrations import replace_with_aqlm_linear
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available, logging
from ..utils.quantization_config import QuantizationConfigMixin
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
class AqlmHfQuantizer(HfQuantizer):
"""
Quantizer of the AQLM method. Enables the loading of prequantized models.
"""
requires_calibration = True
required_packages = ["aqlm"]
optimum_quantizer = None
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def validate_environment(self, *args, **kwargs):
if not is_accelerate_available():
raise ImportError("Using `aqlm` quantization requires Accelerate: `pip install accelerate`")
if not is_aqlm_available():
raise ImportError("Using `aqlm` quantization requires AQLM: `pip install aqlm[gpu,cpu]`")
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
if torch_dtype is None:
if torch.cuda.is_available():
torch_dtype = torch.float16
logger.info(
"CUDA available. Assuming AQLM inference on GPU and loading the model in `torch.float16`. To overwrite it, set `torch_dtype` manually."
)
else:
torch_dtype = torch.float32
logger.info(
"CUDA is unavailable. Assuming AQLM inference on CPU and loading the model in `torch.float32`. To overwrite it, set `torch_dtype` manually."
)
return torch_dtype
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
**kwargs,
):
replace_with_aqlm_linear(
model,
quantization_config=self.quantization_config,
linear_weights_not_to_quantize=self.quantization_config.linear_weights_not_to_quantize,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
return model
@property
def is_trainable(self, model: Optional["PreTrainedModel"] = None):
aqlm_supports_training = version.parse(importlib.metadata.version("aqlm")) >= version.parse("1.0.2")
if aqlm_supports_training:
return True
else:
logger.warning(
f"Currently installed `aqlm` version ({importlib.metadata.version('aqlm')}) doesn't support training. If you wish to train a quantized model, please update `aqlm` with `pip install aqlm>=1.0.2`"
)
return False
@property
def is_serializable(self):
return True