125 lines
5.0 KiB
Python
125 lines
5.0 KiB
Python
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import importlib.metadata
|
||
|
from typing import TYPE_CHECKING
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from .base import HfQuantizer
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..modeling_utils import PreTrainedModel
|
||
|
|
||
|
from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging
|
||
|
from ..utils.quantization_config import AWQLinearVersion
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class AwqQuantizer(HfQuantizer):
|
||
|
"""
|
||
|
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978)
|
||
|
"""
|
||
|
|
||
|
# AWQ requires data callibration - we support only inference
|
||
|
requires_calibration = True
|
||
|
|
||
|
required_packages = ["awq", "accelerate"]
|
||
|
|
||
|
def __init__(self, quantization_config, **kwargs):
|
||
|
super().__init__(quantization_config, **kwargs)
|
||
|
|
||
|
def validate_environment(self, device_map, **kwargs):
|
||
|
if not torch.cuda.is_available():
|
||
|
raise RuntimeError("GPU is required to run AWQ quantized model.")
|
||
|
|
||
|
if not is_auto_awq_available():
|
||
|
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)")
|
||
|
|
||
|
if not is_accelerate_available():
|
||
|
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)")
|
||
|
|
||
|
if device_map is None:
|
||
|
logger.warning_once(
|
||
|
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set "
|
||
|
"your model on a GPU device in order to run your model."
|
||
|
)
|
||
|
elif device_map is not None:
|
||
|
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()):
|
||
|
raise ValueError(
|
||
|
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device."
|
||
|
" This is not supported. Please remove the CPU or disk device from the device_map."
|
||
|
)
|
||
|
|
||
|
def update_torch_dtype(self, torch_dtype):
|
||
|
if torch_dtype is None:
|
||
|
torch_dtype = torch.float16
|
||
|
elif torch_dtype != torch.float16:
|
||
|
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.")
|
||
|
return torch_dtype
|
||
|
|
||
|
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
||
|
from ..integrations import get_keys_to_not_convert, replace_with_awq_linear
|
||
|
|
||
|
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
||
|
|
||
|
if self.quantization_config.modules_to_not_convert is not None:
|
||
|
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert)
|
||
|
|
||
|
model, has_been_replaced = replace_with_awq_linear(
|
||
|
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert
|
||
|
)
|
||
|
|
||
|
if not has_been_replaced:
|
||
|
logger.warning(
|
||
|
"You are loading an AWQ model but no linear modules were found in your model."
|
||
|
" Please double check your model architecture, or submit an issue on github if you think this is a bug."
|
||
|
)
|
||
|
|
||
|
def _process_model_after_weight_loading(self, model):
|
||
|
if self.quantization_config.do_fuse:
|
||
|
from ..integrations import fuse_awq_modules
|
||
|
|
||
|
model = fuse_awq_modules(model, self.quantization_config)
|
||
|
model._awq_is_fused = True # TODO: consider storing this flag in model.config instead
|
||
|
|
||
|
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
|
||
|
from ..integrations import post_init_awq_exllama_modules
|
||
|
|
||
|
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config)
|
||
|
|
||
|
@property
|
||
|
def is_serializable(self):
|
||
|
# AWQ through auto-awq has been always serializable, except if the model is fused.
|
||
|
if self.quantization_config.do_fuse:
|
||
|
logger.warning("You cannot save an AWQ model that uses fused modules!")
|
||
|
return False
|
||
|
|
||
|
if self.quantization_config.version == AWQLinearVersion.EXLLAMA:
|
||
|
logger.warning("You cannot save an AWQ model that uses Exllama backend!")
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def is_trainable(self):
|
||
|
# AWQ supports PEFT fine-tuning from version 0.2.0
|
||
|
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0"
|
||
|
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT)
|