318 lines
14 KiB
Python
318 lines
14 KiB
Python
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import importlib
|
||
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
||
|
|
||
|
from packaging import version
|
||
|
|
||
|
from .base import HfQuantizer
|
||
|
from .quantizers_utils import get_module_from_name
|
||
|
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from ..modeling_utils import PreTrainedModel
|
||
|
|
||
|
from ..utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
|
||
|
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
from ..pytorch_utils import Conv1D
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
class Bnb4BitHfQuantizer(HfQuantizer):
|
||
|
"""
|
||
|
4-bit quantization from bitsandbytes.py quantization method:
|
||
|
before loading: converts transformer layers into Linear4bit during loading: load 16bit weight and pass to the
|
||
|
layer object after: quantizes individual weights in Linear4bit into 4bit at the first .cuda() call
|
||
|
saving:
|
||
|
from state dict, as usual; saves weights and `quant_state` components
|
||
|
loading:
|
||
|
need to locate `quant_state` components and pass to Param4bit constructor
|
||
|
"""
|
||
|
|
||
|
use_keep_in_fp32_modules = True
|
||
|
requires_parameters_quantization = True
|
||
|
requires_calibration = False
|
||
|
|
||
|
required_packages = ["bitsandbytes", "accelerate"]
|
||
|
|
||
|
def __init__(self, quantization_config, **kwargs):
|
||
|
super().__init__(quantization_config, **kwargs)
|
||
|
|
||
|
if self.quantization_config.llm_int8_skip_modules is not None:
|
||
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
||
|
|
||
|
def validate_environment(self, *args, **kwargs):
|
||
|
if not (is_accelerate_available() and is_bitsandbytes_available()):
|
||
|
raise ImportError(
|
||
|
"Using `bitsandbytes` 8-bit quantization requires Accelerate: `pip install accelerate` "
|
||
|
"and the latest version of bitsandbytes: `pip install -i https://pypi.org/simple/ bitsandbytes`"
|
||
|
)
|
||
|
|
||
|
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
|
||
|
raise ValueError(
|
||
|
"Converting into 4-bit or 8-bit weights from tf/flax weights is currently not supported, please make"
|
||
|
" sure the weights are in PyTorch format."
|
||
|
)
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
|
||
|
|
||
|
device_map = kwargs.get("device_map", None)
|
||
|
if (
|
||
|
device_map is not None
|
||
|
and isinstance(device_map, dict)
|
||
|
and not self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
||
|
):
|
||
|
device_map_without_lm_head = {
|
||
|
key: device_map[key] for key in device_map.keys() if key not in self.modules_to_not_convert
|
||
|
}
|
||
|
if "cpu" in device_map_without_lm_head.values() or "disk" in device_map_without_lm_head.values():
|
||
|
raise ValueError(
|
||
|
"""
|
||
|
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the
|
||
|
quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules
|
||
|
in 32-bit, you need to set `llm_int8_enable_fp32_cpu_offload=True` and pass a custom `device_map` to
|
||
|
`from_pretrained`. Check
|
||
|
https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
|
||
|
for more details.
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.39.0"):
|
||
|
raise ValueError(
|
||
|
"You have a version of `bitsandbytes` that is not compatible with 4bit inference and training"
|
||
|
" make sure you have the latest version of `bitsandbytes` installed"
|
||
|
)
|
||
|
|
||
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
||
|
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"):
|
||
|
from accelerate.utils import CustomDtype
|
||
|
|
||
|
if target_dtype != torch.int8:
|
||
|
logger.info("target_dtype {target_dtype} is replaced by `CustomDtype.INT4` for 4-bit BnB quantization")
|
||
|
return CustomDtype.INT4
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You are using `device_map='auto'` on a 4bit loaded version of the model. To automatically compute"
|
||
|
" the appropriate device map, you should upgrade your `accelerate` library,"
|
||
|
"`pip install --upgrade accelerate` or install it from source to support fp4 auto device map"
|
||
|
"calculation. You may encounter unexpected behavior, or pass your own device map"
|
||
|
)
|
||
|
|
||
|
def check_quantized_param(
|
||
|
self,
|
||
|
model: "PreTrainedModel",
|
||
|
param_value: "torch.Tensor",
|
||
|
param_name: str,
|
||
|
state_dict: Dict[str, Any],
|
||
|
**kwargs,
|
||
|
) -> bool:
|
||
|
import bitsandbytes as bnb
|
||
|
|
||
|
module, tensor_name = get_module_from_name(model, param_name)
|
||
|
if isinstance(module._parameters.get(tensor_name, None), bnb.nn.Params4bit):
|
||
|
# Add here check for loaded components' dtypes once serialization is implemented
|
||
|
return True
|
||
|
elif isinstance(module, bnb.nn.Linear4bit) and tensor_name == "bias":
|
||
|
# bias could be loaded by regular set_module_tensor_to_device() from accelerate,
|
||
|
# but it would wrongly use uninitialized weight there.
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def create_quantized_param(
|
||
|
self,
|
||
|
model: "PreTrainedModel",
|
||
|
param_value: "torch.Tensor",
|
||
|
param_name: str,
|
||
|
target_device: "torch.device",
|
||
|
state_dict: Dict[str, Any],
|
||
|
unexpected_keys: Optional[List[str]] = None,
|
||
|
):
|
||
|
"""
|
||
|
combines logic from _load_state_dict_into_meta_model and .integrations.bitsandbytes.py::set_module_quantized_tensor_to_device()
|
||
|
"""
|
||
|
import bitsandbytes as bnb
|
||
|
|
||
|
module, tensor_name = get_module_from_name(model, param_name)
|
||
|
|
||
|
if tensor_name not in module._parameters:
|
||
|
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
||
|
|
||
|
old_value = getattr(module, tensor_name)
|
||
|
|
||
|
if tensor_name == "bias":
|
||
|
if param_value is None:
|
||
|
new_value = old_value.to(target_device)
|
||
|
else:
|
||
|
new_value = param_value.to(target_device)
|
||
|
|
||
|
new_value = torch.nn.Parameter(new_value, requires_grad=old_value.requires_grad)
|
||
|
module._parameters[tensor_name] = new_value
|
||
|
return
|
||
|
|
||
|
if not isinstance(module._parameters[tensor_name], bnb.nn.Params4bit):
|
||
|
raise ValueError("this function only loads `Linear4bit components`")
|
||
|
if (
|
||
|
old_value.device == torch.device("meta")
|
||
|
and target_device not in ["meta", torch.device("meta")]
|
||
|
and param_value is None
|
||
|
):
|
||
|
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {target_device}.")
|
||
|
|
||
|
# construct `new_value` for the module._parameters[tensor_name]:
|
||
|
if self.pre_quantized:
|
||
|
# 4bit loading. Collecting components for restoring quantized weight
|
||
|
# This can be expanded to make a universal call for any quantized weight loading
|
||
|
|
||
|
if not self.is_serializable:
|
||
|
raise ValueError(
|
||
|
"Detected int4 weights but the version of bitsandbytes is not compatible with int4 serialization. "
|
||
|
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
||
|
)
|
||
|
|
||
|
if (param_name + ".quant_state.bitsandbytes__fp4" not in state_dict) and (
|
||
|
param_name + ".quant_state.bitsandbytes__nf4" not in state_dict
|
||
|
):
|
||
|
raise ValueError(
|
||
|
f"Supplied state dict for {param_name} does not contain `bitsandbytes__*` and possibly other `quantized_stats` components."
|
||
|
)
|
||
|
|
||
|
quantized_stats = {}
|
||
|
for k, v in state_dict.items():
|
||
|
if param_name + "." in k:
|
||
|
quantized_stats[k] = v
|
||
|
if unexpected_keys is not None and k in unexpected_keys:
|
||
|
unexpected_keys.remove(k)
|
||
|
|
||
|
new_value = bnb.nn.Params4bit.from_prequantized(
|
||
|
data=param_value,
|
||
|
quantized_stats=quantized_stats,
|
||
|
requires_grad=False,
|
||
|
device=target_device,
|
||
|
)
|
||
|
else:
|
||
|
new_value = param_value.to("cpu")
|
||
|
|
||
|
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
|
||
|
# Since weights are saved in the correct "orientation", we skip transposing when loading.
|
||
|
if issubclass(module.source_cls, Conv1D):
|
||
|
new_value = new_value.T
|
||
|
|
||
|
kwargs = old_value.__dict__
|
||
|
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(target_device)
|
||
|
|
||
|
module._parameters[tensor_name] = new_value
|
||
|
|
||
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.adjust_max_memory
|
||
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
||
|
# need more space for buffers that are created during quantization
|
||
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
||
|
return max_memory
|
||
|
|
||
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_torch_dtype
|
||
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
||
|
if torch_dtype is None:
|
||
|
# We force the `dtype` to be float16, this is a requirement from `bitsandbytes`
|
||
|
logger.info(
|
||
|
"Overriding torch_dtype=%s with `torch_dtype=torch.float16` due to "
|
||
|
"requirements of `bitsandbytes` to enable model loading in 8-bit or 4-bit. "
|
||
|
"Pass your own torch_dtype to specify the dtype of the remaining non-linear layers or pass"
|
||
|
" torch_dtype=torch.float16 to remove this warning.",
|
||
|
torch_dtype,
|
||
|
)
|
||
|
torch_dtype = torch.float16
|
||
|
return torch_dtype
|
||
|
|
||
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer.update_device_map
|
||
|
def update_device_map(self, device_map):
|
||
|
if device_map is None:
|
||
|
device_map = {"": torch.cuda.current_device()}
|
||
|
logger.info(
|
||
|
"The device_map was not initialized. "
|
||
|
"Setting device_map to {'':torch.cuda.current_device()}. "
|
||
|
"If you want to use the model for inference, please set device_map ='auto' "
|
||
|
)
|
||
|
return device_map
|
||
|
|
||
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_before_weight_loading
|
||
|
def _process_model_before_weight_loading(
|
||
|
self,
|
||
|
model: "PreTrainedModel",
|
||
|
device_map,
|
||
|
keep_in_fp32_modules: List[str] = [],
|
||
|
**kwargs,
|
||
|
):
|
||
|
from ..integrations import get_keys_to_not_convert, replace_with_bnb_linear
|
||
|
|
||
|
load_in_8bit_fp32_cpu_offload = self.quantization_config.llm_int8_enable_fp32_cpu_offload
|
||
|
|
||
|
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
|
||
|
if self.quantization_config.llm_int8_skip_modules is None:
|
||
|
self.modules_to_not_convert = get_keys_to_not_convert(model)
|
||
|
else:
|
||
|
self.modules_to_not_convert = self.quantization_config.llm_int8_skip_modules
|
||
|
|
||
|
if not isinstance(self.modules_to_not_convert, list):
|
||
|
self.modules_to_not_convert = [self.modules_to_not_convert]
|
||
|
|
||
|
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
||
|
|
||
|
# Extend `self.modules_to_not_convert` to keys that are supposed to be offloaded to `cpu` or `disk`
|
||
|
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
|
||
|
keys_on_cpu = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
|
||
|
|
||
|
if len(keys_on_cpu) > 0 and not load_in_8bit_fp32_cpu_offload:
|
||
|
raise ValueError(
|
||
|
"If you want to offload some keys to `cpu` or `disk`, you need to set "
|
||
|
"`llm_int8_enable_fp32_cpu_offload=True`. Note that these modules will not be "
|
||
|
" converted to 8-bit but kept in 32-bit."
|
||
|
)
|
||
|
self.modules_to_not_convert.extend(keys_on_cpu)
|
||
|
|
||
|
model = replace_with_bnb_linear(
|
||
|
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config
|
||
|
)
|
||
|
# TODO: consider bringing replace_with_bnb_linear() code from ..integrations/bitsandbyter.py to here
|
||
|
|
||
|
model.config.quantization_config = self.quantization_config
|
||
|
|
||
|
# Copied from transformers.quantizers.quantizer_bnb_8bit.Bnb8BitHfQuantizer._process_model_after_weight_loading with 8bit->4bit
|
||
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
|
||
|
model.is_loaded_in_4bit = True
|
||
|
model.is_4bit_serializable = self.is_serializable
|
||
|
return model
|
||
|
|
||
|
@property
|
||
|
def is_serializable(self):
|
||
|
_is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse("0.41.3")
|
||
|
|
||
|
if not _is_4bit_serializable:
|
||
|
logger.warning(
|
||
|
"You are calling `save_pretrained` to a 4-bit converted model, but your `bitsandbytes` version doesn't support it. "
|
||
|
"If you want to save 4-bit models, make sure to have `bitsandbytes>=0.41.3` installed."
|
||
|
)
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def is_trainable(self) -> bool:
|
||
|
return True
|