71 lines
2.4 KiB
Python
71 lines
2.4 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding=utf-8
|
||
|
|
||
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import torch
|
||
|
|
||
|
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
|
||
|
from .base import PipelineTool
|
||
|
|
||
|
|
||
|
class TextClassificationTool(PipelineTool):
|
||
|
"""
|
||
|
Example:
|
||
|
|
||
|
```py
|
||
|
from transformers.tools import TextClassificationTool
|
||
|
|
||
|
classifier = TextClassificationTool()
|
||
|
classifier("This is a super nice API!", labels=["positive", "negative"])
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
default_checkpoint = "facebook/bart-large-mnli"
|
||
|
description = (
|
||
|
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
|
||
|
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
|
||
|
"It returns the most likely label in the list of provided `labels` for the input text."
|
||
|
)
|
||
|
name = "text_classifier"
|
||
|
pre_processor_class = AutoTokenizer
|
||
|
model_class = AutoModelForSequenceClassification
|
||
|
|
||
|
inputs = ["text", ["text"]]
|
||
|
outputs = ["text"]
|
||
|
|
||
|
def setup(self):
|
||
|
super().setup()
|
||
|
config = self.model.config
|
||
|
self.entailment_id = -1
|
||
|
for idx, label in config.id2label.items():
|
||
|
if label.lower().startswith("entail"):
|
||
|
self.entailment_id = int(idx)
|
||
|
if self.entailment_id == -1:
|
||
|
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.")
|
||
|
|
||
|
def encode(self, text, labels):
|
||
|
self._labels = labels
|
||
|
return self.pre_processor(
|
||
|
[text] * len(labels),
|
||
|
[f"This example is {label}" for label in labels],
|
||
|
return_tensors="pt",
|
||
|
padding="max_length",
|
||
|
)
|
||
|
|
||
|
def decode(self, outputs):
|
||
|
logits = outputs.logits
|
||
|
label_id = torch.argmax(logits[:, 2]).item()
|
||
|
return self._labels[label_id]
|